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The focus of this Ph.D. thesis is on various distance and domination properties in

graphs. In particular, we prove strong results about the interactions between aster-

oidal sets and dominating targets. Our results add to or extend a plethora of results

on these properties within the literature. We define the class of strict dominating

pair graphs and show structural and algorithmic properties of this class. Notably, we

prove that such graphs have diameter 3, 4, or contain an asteroidal quadruple. Then,

we design an algorithm to efficiently recognize chordal hereditary dominating pair

graphs. We provide new results that describe the internal structure of these graphs,

and prove that asteroidal quadruples may provide diameter bounds. Then, we extend

the notion of polarity to dominating targets by defining the concept of polar targets.

We investigate dominating targets in cycle graphs and show that they cannot have

polar targets. Then, we provide a sufficient condition for a graph to have a polar

target of size 3.
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Chapter 1

Introduction

Distance and domination are amongst the most basic concepts in mathematics.

Whereas these terms are usually understood in their geometric interpretations, they

take on different meanings in combinatorical structures with a non-euclidean nature.

For example, metric distances are irrelevant in many data structures used in computer

science because of the inherent arrangement of memory addresses.

Most applications require special data structures to efficiently process data or

achieve an solution. A graph is a ubiquitous data structure in computer science.

Graphs allow computer scientists to model systems consisting of objects and relations

between those objects, and thus efficient algorithms are required to process these

graphs. In a graph, those objects are known as vertices and their relationships are

called edges. In this thesis, we assume the graphs are simple. In a simple graph, a

pair of vertices has at most one edge between them. Therefore, simple graphs can be

used to model binary relations. However, many problems are either untractable or

it is unknown whether a polynomial-time algorithm exists. Classically NP-complete

problems such as the independent set, hamiltonicity and feedback vertex

set are amongst many such problems. It is most likely that no polynomial-time

solution exists for these problems unless P = NP, but such a prospect is beyond the

scope of this thesis.
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There are ways of coping with the intractability of the aforementioned problems.

One method is to utilize approximation algorithms that are guaranteed to offer a

solution quickly within a known margin of error. Another method is to “restrict” the

general graph to that of some special graph class. In this thesis, the focus is strongly

placed on the second method.

1.1 Recognition Algorithms

In order to solve graph theoretical problems, we investigate structural properties

of special graph class families. An important problem related to special graph classes

is that of recognition, in which one determines whether a given graph belongs to

a particular graph class.

We define several terms that will be used throughout this thesis. By G we denote

a simple, undirected, and finite graph with n vertices. As is standard, we let V denote

the vertex set of G and E denote the edge set of G. Let S ⊆ V be a subset of vertices

of a graph G = (V,E). The induced subgraph G[S] is the graph whose vertex set is S

and whose edge set consists of all of the edges in E that have both endpoints in S.

We define the notion of a forbidden subgraph with respect to a graph class by

borrowing the following definition from a survey by Brandstädt et al. [5].

Definition 1. Let F be a family of graphs. A graph G is F-free (i.e. F is forbidden

in G) if G contains no induced subgraph isomorphic to a member of F .

The path graph formed by k vertices and k − 1 edges is denoted by Pk. Consider

a graph class that is Pk-free. In order to recognize whether a graph is Pk-free, it is

sufficient to iterate through every set S ⊆ G of k vertices in V and compare edge

incidence in order to determine if S is an induced Pk. If no such set S exists, then
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G is Pk-free. Certainly, we would call any such methodology a “brute-force” whose

time-complexity for recognition is lower-bound by the size of S.

Any suboperation that requires brute-force in an algorithm can be considered a

bottle-neck to the efficiently of the algorithm. This is especially true in graph classes

that are characterized by forbidden subgraphs, but is also true with respect to the

computing various properties of graphs. Most broadly, in this thesis we will exploit the

extremal and structural properties of certain graph classes in order to avoid utilizing

any brute-force approach. Many of our lemmas in Chapter 2 build up to a recognition

algorithm.

1.2 Distance and Domination

Applications to distance and domination are legion; for example, the longest of

all distances in a graph is its diameter, and the diameter has an immediate appli-

cation in communication networks where the furthest distance between hosts and

clients represents the longest communications distance and slowest time to transfer

data between any two destination. Moreover, a small dominating set in a commu-

nication network can be considered a resilient “backbone”. This dominating set can

be reinforced in a cost-effective manner in order to ensure that every server can be

reached despite adversarial conditions (i.e. servers may be prone to fail). Many of

our domination-related results are motivated by graphs as models for communication

networks.

In this thesis, most graphs given have nice distance or domination properties. We

say that a vertex u is adjacent to a vertex v if there exists an edge connecting u to v

in E. We give a much more strict property of a set in G.

Definition 2. Given a graph G = (V,E), a subgraph S ⊆ G dominates a set A ⊆ G



4

if every vertex in A is contained in S or is adjacent to some vertex in S.

We consider two graph structures that capture certain useful notions of distance

and domination: the dominating targets and asteroidal sets. We are especially inter-

ested in graphs in which the sizes of these sets is bounded. These graphs have an

interesting and rich structure that can be exploited to compute certain properties of

graphs more efficiently.

A dominating target is a set of vertices S ⊆ G such that every connected superset

of S is a dominating set of G. Therefore, the identification of a dominating target T

guarantees that the removal of vertices from G provides a graph having a dominating

superset of T so long as such a removal does not disconnect T . Therefore, we might

say that a small dominating target is a “domination-preserving” characteristic of a

graph.

Figure 1.1: Graphs having asteroidal sets of size 3 and 4, respectively, as shown by
the unfilled vertices.

An asteroidal triple is a triple of vertices such that the removal of the neighbor-

hood of one vertex does not disconnect the other two. Every pair of an asteroidal

triple has a path between them that avoids dominating the third. Thus, in a sense,

asteroidal triples are inherently domination “avoiding” as they provide paths that

can be traversed to avoid the domination of a particular vertex. We also study a

generalization of asteroidal triples known as asteroidal sets, but define them slightly

differently in Chapters 2 and 3 (in the former, we do not consider asteroidal sets with
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size 2 or less). Fig. 1.1 provides two examples of asteroidal sets in graphs. Moreover,

asteroidal quadruples (asteroidal sets of size 4) are a natural structural consequence

of certain distance properties. For example, Gutierrez [22] showed that they exist

in directed path graphs that are non-rooted path graphs. We will come to a similar

result in Chapter 2.

1.3 Special Graph Classes

In this section, we will provide definitions of several famous and well-studied graph

classes. These graph classes provide special edge cases to most of our results because

we mostly study their various superclasses and counterparts. We complete this section

by foreshadowing our main results.

Definition 3. A graph is an interval graph if it has an intersection model consisting

of intervals on a straight line.

0 1 2 3 4 5 6 7 8 9

Figure 1.2: An intersection model of four intervals on a straight line and the graph
with four vertices that it denotes.

Interval graphs have played a major role in scheduling problems and have were

independently discovered within several research disciplines, including bioinformatics

and geology [14]. The fact that they have a dominating shortest path [8] has been
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generalized and applied in a variety of fields, including sequence similarity networks

of reads corresponding to singular regions of genomes [26].

One particularly important property of interval graphs is that they are asteroidal

triple-free (AT-free). The next graph class is not necessarily AT-free but is vital

nonetheless.

Definition 4. A graph is chordal if every cycle of length at least 4 has a chord.

Figure 1.3: The left graph is a non-chordal whereas the right graph is chordal.

The above graph classes are in some ways more restricted than the graph classes

we will be studying (see Fig 1.4). Regardless, many algorithmic problems have

polynomial-time solutions in AT-free graphs and graphs with bounded sizes on their

asteroidal sets.

1.3.1 Known Results and Applications

We will survey some of the known literature: Hempel et al. [15] showed that

hamiltonicity is polynomial if the AT-free graph is claw-free, although the problem

remains open in AT-free graphs in general. AT-free graphs also have dominating

targets of size 2 or less [16]. Stacho [25] proved that these graphs can be 3-colored in

polynomial-time. Notably, Alcón studied asteroidal sets specifically in chordal graphs

[3] and Golovach et al. [13] discovered a polynomial-time algorithm to compute s-

clubs (sets of vertices in the graph that induce diameter at most s) in AT-free graphs.
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Brandstädt et al. [4] strengthened the connection between AT-free graphs and ad hoc

networks by studying r-coloring complexity as a model for frequency assignment in

multihop radio networks. Moreover, tree spanners and routing schemes were studied

in AT-free graphs in order to more generally model wireless and sensor networks by

Yan [27].

This thesis is organized in the following way. In Chapter 2, we study two general-

izations of the asteroidal-free graphs: hereditary dominating pair and diametral path.

We show that chordal ∩ hereditary dominating pair graphs can be efficiently recog-

nized without using a brute-force operation. Many of our structural results provide

necessary conditions for the existence of asteroidal quadruples.

The notion of polarity generally refers to the partitioning of subsets of vertices

in a graph to satisfy some property. For example, the split graphs (graphs whose

vertices can be partitioned into an independent set and a clique and are precisely the

chordal ∩ co-chordal graphs) have also been independently coined polar graphs in the

literature [11]. In Chapter 3, we investigate notions of polarity in graphs with given

dominating targets and asteroidal sets. We show that a graph with a triple exhibiting

a particular combination of properties causes the graph to exhibit greater stability

in the form of so-called polar targets. Along the way, we show that asteroidal sets

provide strong restrictions on the connected supersets of a given dominating target.

We show that the class of graphs having an asteroidal set whose sizes exceeds that of

any dominating target are somewhat rare, potentially a cause for a vulnerability in a

network, but mathematically interesting.

Chapters 2 and 3 have been reproduced from published [2] or submitted articles

and stand on their own as complete manuscripts apart from this thesis.
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an(G) ≤ k

dt(G) ≤ k

dt(G) ≤ 2 No AT has 3-spread

Frame HDP

HDPDiametral Path

AT-freeChordal

Interval

Path

Strict Dominating Pair

Figure 1.4: A diagram that depicts the inclusion relationship of the graph classes
studied in this thesis. For any members G → H, we have that G is a superclass of H.
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Chapter 2

Asteroidal Sets and Dominating Paths

An independent set of three vertices is called an asteroidal triple (AT) if there

exists a path between any two of them that avoids the neighborhood of the third.

Asteroidal triple-free (AT-free) graphs are very well-studied, but some of their various

superclasses are not. We study two of these superclasses: hereditary dominating pair

(HDP) graphs and diametral path graphs. We correct a mistake that has appeared

in the literature claiming that the class of diametral path graphs are a superclass

of HDP. More specifically, we show that a graph with a dominating shortest path

does not necessarily contain a dominating diametral path. We say a graph is a

strict dominating pair graph if it contains a dominating pair but has no dominating

diametral path, and we show structural and algorithmic properties of these graphs.

To study properties of HDP graphs, we introduce the notion of spread in asteroidal

triples. Given a dominating pair, we show that all paths between this pair meet

the common neighborhood of some pair from each asteroidal triple. We use these

results to improve the best known time complexity for the recognition of chordal

HDP graphs.
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2.1 Introduction

Asteroidal triple-free (AT-free) graphs capture a common property which imposes

the linearity we see in a multitude of classic graph classes. For example, asteroidal

triples are forbidden in interval, permutation, and trapezoidal graphs. A famous result

by Lekkerkerker and Boland [21] states that interval graphs are exactly the class of

chordal AT-free graphs. Several problems that are NP-Complete in general have been

shown to have polynomial-time solutions on AT-free graphs, including independent

set and feedback vertex set [6, 19]. The recognition of AT-free graphs is known

to be polynomial [20]. Corneil, Olariu and Stewart [8] showed that AT-free graphs

have two key properties: First, all AT-free graphs have a dominating pair, a pair of

two vertices such that any path between them dominates the vertex set of the graph.

Second, all AT-free graphs have a dominating diametral path. Because the class of AT-

free graphs is hereditary, these two properties hold true for all connected, induced

subgraphs of any AT-free graph. In this thesis, we consider these two properties

generalized to their own graph classes, which are not necessarily AT-free.

The class of dominating pair graphs is the largest graph class for which the domi-

nating pair property is hereditary. Dominating pair graphs that have asteroidal triples

were investigated by Pržulj, Corneil, and Köhler [24], where the name hereditary dom-

inating pair (HDP) was introduced. We will use the term HDP when referring to

dominating pair graphs in order to better distinguish them from the weaker class of

graphs that have a dominating pair but do not necessarily have a dominating pair in

every connected, induced subgraph. Polynomial-time algorithms for steiner sets,

minimum connected dominating sets exist for HDP graphs [1]. dominating

set and total dominating set have also been solved in polynomial-time [18]. In a

general sense, HDP graphs may find an intuitive application as a topology for wireless,
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ad hoc networks or critical systems because communication may be less susceptible

to disruption.

A graph is diametral path if it contains a dominating diametral path in every

connected, induced subgraph. Recently, rainbow vertex coloring was studied on

the class of diametral path graphs, drawing parallels to encryption and data security

[10]. Although it has been claimed that a graph with a dominating shortest path also

has a dominating diametral path [23] and this has been referred to in other literature

[9], we show a counterexample. If a graph contains a dominating pair but has no

dominating diametral path, then the graph is strict dominating pair.

In Sect. 2.3, we analyze strict dominating pair graphs. We prove that the di-

ameter of these graphs is close to the distance of a dominating pair, a result that

can be used to quickly compute the diameter if given a dominating pair. We give

a necessary condition (Theorem 16) to be in strict dominating pair. We show that

strict dominating pair graphs have diameter 3, 4, or have an asteroidal number of at

least 4.

In Sect. 2.4, we introduce the notion of spread in asteroidal triples. We show that

HDP graphs may not contain asteroidal triples with 3-spread. Intuitively speaking,

an asteroidal triple without 3-spread has a pair of vertices that remain “close” in every

connected, induced subgraph that contains the given asteroidal triple. So, 3-spread

describes a hereditary structure that can be exploited to design algorithms, such as

identifying cut sets or points of weakness of a network. This allows us to improve the

run-time complexity for the recognition of chordal HDP graphs.

In Sect. 2.5, we study the internal structure of graphs that do not have an aster-

oidal triple with 3-spread. We prove that asteroidal quadruples may provide diameter

bounds in HDP graphs. Then, we investigate eccentricities of dominating pair vertices

and provide a sufficient condition for one to have eccentricity equal to the diameter
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of the graph.

2.2 Preliminaries

Our graph theory notation basically follows that of Golumbic [14]. By G we

denote a simple, undirected, and finite graph with n vertices. The vertex set of

G is denoted by V and the edge set of G is denoted by E. For any x ∈ G let

N(x) = {y : {x, y} ∈ E} be the (open) neighborhood of x and N [x] = N(x) ∪ {x}

the closed neighborhood of x.

A set S ⊆ V dominates a set T ⊆ S if every vertex in T is contained in the closed

neighborhood of S. We write u ∼ v to indicate that vertices u and v are adjacent.

More generally, we write u ∼ S if there exists v ∈ S such that u ∼ v. We denote by

CN(S) the common neighborhood of S. i.e.

CN(S) =
⋂
v∈S

N(v).

A sequence of vertices P = ⟨u = x0, x1, . . . , xk−1, xk = v⟩ is called a walk if xi ∼ xi+1

for all i ∈ {0, 1, . . . , k − 1}. We say P is a path if the vertices x0, x1, . . . , xk are

all distinct. A walk with endpoints u and v may be called a u, v-walk. If v ∼ v′

then we denote by P−v′ the walk ⟨u = x0, x1, . . . , xk−1, xk = v, v′⟩. Similarly, if

P = ⟨x0, x1, . . . , xk⟩ and P ′ = ⟨y0, y1, . . . , yq⟩ are walks and xk ∼ y0, then we let

P−P ′ = ⟨x0, . . . , xk, y0, . . . , yq⟩. We write P [xi, xj] where (0 ≤ i ≤ j ≤ k) for the

subwalk ⟨xi, . . . , xj⟩ of P . It is well known that every walk contains a path. In other

words, we can extract a u, v-path from the vertex set of every u, v-walk. The length

of a path is the number of edges it contains.

We say a walk P meets some set S if P ∩S ̸= ∅ and that P avoids S if P ∩S = ∅.
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The notation dG(u, v) denotes geodesic distance, the length of a shortest path, between

the vertices u and v. The eccentricity ecc(v) of a vertex v is the greatest geodesic

distance between v and some other vertex in G. The diameter of G, denoted also as

diam(G), is the greatest geodesic distance between any two vertices in G. Formally,

diam(G) = max{dG(u, v) : u, v ∈ G}. A diametral pair is a pair of vertices (u, v)

such that dG(u, v) = diam(G). A diametral path is any path whose endpoints form a

diametral pair. We use the following generalization of asteroidal triples:

Definition 5. An asteroidal set S is an independent set of at least three vertices such

that, for every vertex v ∈ S, there exists a path between any two remaining vertices of

S \ {v} that avoids N [v]. We call such a path an asteroidal path. The cardinality of

the largest asteroidal set in a graph is known as the asteroidal number of that graph,

denoted by an(G). An asteroidal triple is an asteroidal set of size 3. An asteroidal

quadruple is an asteroidal set of size 4.

Remark. In the literature, asteroidal sets have been defined for 1 or 2 vertices as

well. In this section, we do not consider asteroidal sets of these sizes.

Definition 6. Two vertices a and b form a dominating pair (a, b) if every a, b-path

dominates G. A dominating pair path is any path between a dominating pair of ver-

tices. A graph is called a hereditary dominating pair graph (HDP) if every connected,

induced subgraph has a dominating pair.

It is simple to see that a graph with a dominating pair contains a dominating

shortest path. We introduce the notion of spread as a characteristic of certain aster-

oidal triples.
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Definition 7. An asteroidal triple has k-spread if between any pair of vertices in the

triple there is an induced path of length at least k that avoids the neighborhood of the

third.

a b

Figure 2.1: On the left is a strict dominating pair graph where (a, b) is a dominating
pair and the white vertices form an asteroidal set of size 4. On the right is a diametral
path graph that does not contain a dominating pair.

2.3 Dominating Pairs and Diametral Paths

In this section, we study the structural discrepancy between graphs with domi-

nating pairs and graphs with dominating diametral paths. We state new results on

the relationship between the two properties and expressly state conditions for when

a graph is strict dominating pair. We begin with a correction to the assumption in

past literature that any graph with a dominating shortest path contains a dominating

diametral path.

Proposition 8. A graph with a dominating shortest path does not necessarily contain

a dominating diametral path.

Proof. See the left graph in Fig. 2.1 for an example. The pair (a, b) is a dominat-

ing pair, and thus every shortest a, b-path is dominating. Notice that (a, b) is not

diametral. It is easy to verify that no dominating diametral path exists.
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With respect to the HDP and diametral path graph classes, both are superclasses

of AT-free graphs, yet by Proposition 8 neither is a superclass of the other. To prepare

for our main results, we present several results that relate the diameter of G to the

distance between any dominating pair.

Lemma 9. Let (a, b) be a dominating pair. There exists a diametral pair with one

vertex contained in N [a] and the other contained in N [b].

Proof. Let P be a shortest a, b-path of the form ⟨a = x0, x1, . . . , xk = b⟩, i.e. dG(a, b) =

k. Pair (a, b) is not diametral, otherwise we are done. Let (d1, d2) be a diametral

pair. Certainly d1, d2 are adjacent to P because P is a dominating path by defini-

tion of dominating pair (a, b). If d1 ∼ ⟨x1, . . . , xk−1⟩ and d2 ∼ ⟨x1, . . . , xk−1⟩ then

dG(d1, d2) ≤ k, a contradiction. Therefore, at least one of d1 and d2 is adjacent to a

or b. If d1 ∼ a and d2 ∼ b then we are done; therefore, w.l.o.g. suppose d1 ∼ x1 and

d2 ∼ b. If dG(d1, d2) = dG(a, d2) then (a, d2) is diametral s.t. d2 ∈ N(b), and we are

done. Notice that dG(a, d2) = k+1. So, there exists an a, d2-path Q of length k. Let

Q = ⟨a = u0, u1, . . . , uk = d2⟩. The path Q−b must be dominating and d1 ̸∼ b, so

d1 ∼ Q. We let d1 ∼ ui where i > 0. Now dG(d1, d2) ≤ 1+(k− i) < k, a contradiction

to the diameter of G. Thus, d1 ∈ N [a] and d2 ∈ N [b].

Immediately, we see the following:

Corollary 10. Let G contain a dominating pair (a, b). The diameter of G is bounded

by the following inequality:

dG(a, b) ≤ diam(G) ≤ dG(a, b) + 2.

Moreover, if G is strict dominating pair then diam(G) = dG(a, b)+ 1 and there exists

d1 ∈ N(a) and d2 ∈ N(b) s.t. (d1, d2) is a diametral pair.
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Proof. By Lemma 9, there exists a diametral pair (d1, d2) s.t. d1 ∈ N [a] and d2 ∈

N [b]. If diam(G) = dG(a, b) then any a, b-path is a dominating diametral path, a

contradiction. If diam(G) = dG(a, b) + 2, let P be any shortest a, b-path. We must

have d1 ̸= a and d2 ̸= b. The path d1−P−d2 is a diametral path that dominates G

because it contains P as a subpath.

In the remaining case, diam(G) = dG(a, b) + 1. If d1 = a or d2 = b then either

P−b or a−P is a dominating diametral path, a contradiction.

Theorem 16 gives an interesting necessary condition, but not a characterization,

of strict dominating pair graphs. To simplify the proofs, we introduce the notion of

corner vertices, vertices that bear witness to the fact that a diametral path is not

dominating but a given pair (a, b) is a dominating pair.

Definition 11. If Q is a non-dominating diametral path in a graph G and (a, b) is

a dominating pair, then vertex c is a corner w.r.t. (Q, a) if c is not dominated by Q,

an endpoint of Q is adjacent to a, and c ∈ N(a).

Note that corners are adjacent to elements of the dominating pair, rather than to

intermediate vertices on dominating pair paths. Next, we prove that corner vertices

are inevitable in strict dominating pair graphs.

Lemma 12. Let G have a dominating pair (a, b) and let k = dG(a, b), but no dom-

inating diametral path (and thus in particular diam(G) = k + 1). Let (d1, d2) be a

diametral pair s.t. d1 ∈ N(a) and d2 ∈ N(b). There exists a diametral d1, d2-path Q

that contains b and a corner vertex c w.r.t. (Q, a).

Proof. By Corollary 10 we have dG(d1, d2) = k + 1. We claim that dG(d1, b) = k.

By Corollary 10, dG(d1, b) ≤ k + 1. If dG(d1, b) < k then dG(d1, d2) < k + 1 because

d2 ∼ b, a contradiction. Thus, dG(d1, b) = k. Similarly, dG(a, d2) = k. Let M be a
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shortest d1, b-path. By assumption, diametral path M−d2 is not dominating while

dominating pair path a−M is dominating. Since (a−M)\(M−d2) = {a}, there exists

c ∈ N(a) s.t. c ̸∼ (M−d2). Thus, we can set Q = M−d2 and we are done.

a b

d1 d2

c

a b

d1 d2

c1 c2

Figure 2.2: On the left we depict a single corner vertex c. On the right, Lemma 12 is
applied to both dominating pair vertices a and b. The red path is a shortest a, b-path
of length k. The blue path is Q within the proof. Dotted edges may not exist.

The remaining proofs will utilize the existence of corner vertices to resolve various

properties of strict dominating pair graphs.

Lemma 13. Under the hypotheses of Lemma 12, let P1, P2 be diametral d1, d2-paths

containing b and a, respectively. Let c1 and c2 be corner vertices w.r.t. (P1, a) and

(P2, b), respectively. If c1 ∼ c2 then diam(G) ∈ {3, 4}.

Proof. It is easy to check that k ≥ 2. Notice that there exists a path R = ⟨a, c1, c2, b⟩

of length 3. If R is induced, then k = 3 and thus diam(G) = k + 1 = 4. If R is not

induced, then k < 3.

Next, we consider the effect that corner vertices have on the asteroidal number of

the graph. To prepare for the theorem, we resolve general consequences of having a

corner vertex that does not belong to a diametral pair.

Lemma 14. Under the hypotheses of Lemma 12, let c be a corner vertex w.r.t. (Q, a)

where Q is a diametral d1, d2-path that contains b. The following hold:
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1. If R is a shortest c, b-path and dG(c, b) < k, then N [d1] ∩R = ∅.

2. If G \N [d1] disconnects c from b, then (c, d2) is a diametral pair. Moreover, if

R′ is any shortest c, d2-path in G, then d1 is adjacent to the first vertex on R′

following c.

Proof. Assume for the sake of contradiction that v ∈ N [d1]∩R. Since v ̸= c the walk

d1−R[v, b]−d2 has length strictly less than k + 1, a contradiction.

For the second half, let R′ be a shortest c, d2-path and suppose that dG(c, d2) ≤ k.

Since R′−b is a c, b-walk, there exists w on R′−b such that w ∈ N [d1]. Note that

w ̸= c by definition and w ̸= b since k ≥ 2. The path R′′ = d1−R′[w, d2] has length

strictly less than k + 1, a contradiction. Thus (c, d2) is diametral and R′ has length

k + 1. Note that the same argument shows that w cannot occur later than the first

vertex on R′ following c.

a b

d1 d2

c
w

Figure 2.3: Depicting Lemma 14 where (c, d2) is diametral. The dashed edge cannot
exist. The blue path is Q and the red path is R′ \ {d2}.

We can see that Lemma 14 is symmetric with respect to a and b for a given

dominating pair (a, b).

To simplify the following proof, we define new relationship notation. Let (a, b)

be a dominating pair and let (d1, d2) be a diametral pair such that d1 ∈ N(a) and
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d2 ∈ N(b). Let c be a corner vertex with respect to (P, a) where P is a diametral

d1, d2-path that contains b. In that case, we say that d1 ≺P c.

c0 = c4
b

c1 d2

c2

c3

s

s′

Figure 2.4: Depicting Lemma 15 where c3 ≺P3 c0, so h = 0. The red path is Ph \{d2}
and the blue path is Ph′ \ {d2}.

Lemma 15. Let G satisfy the hypotheses of Lemma 12 and let diam(G) > 4. There

exist c, c′ ∈ N(a) with a shortest c, b-path P and a shortest c′, b-path P ′ s.t. N [c]∩P ′ =

N [c′] ∩ P = ∅.

Proof. By Corollary 10, we let (d1, d2) be a diametral pair s.t. d1 ∈ N(a) and d2 ∈

N(b). We let c0 = d1 and P0 be a diametral d1, d2-path that contains b. We will

construct a sequence of distinct corner vertices c1, c2, . . . in N(a), and diametral

paths P1, P2, . . . such that Pi is a ci, d2-path and ci+1 is a corner vertex w.r.t. (Pi, a).

Moreover, our sequence will satisfy the condition that for each ci, set N [ci] meets

every shortest ci+1, b-path.

To be precise, given c0 ≺P0 c1 ≺P1 · · · ≺Pi−1 ci ≺Pi we let ci+1 be a corner vertex

w.r.t. (Pi, a), as promised by Lemma 12, distinct from c0, . . . , ci. If there is no corner

vertex distinct from the earlier ones, the process terminates at the path Pi.
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The step above alternates with the one we describe now, that of finding a path

to add to c0 ≺P0 c1 ≺P1 · · · ≺Pi−1 ci ≺Pi ci+1. At this point there are two ways at

which we might be done. If dG(ci+1, b) < k then by the definition of a corner vertex

and Lemma 14 we have N [ci+1]∩Pi = ∅ and N [ci]∩Pi+1 = ∅, so we are done, letting

c = ci+1, c
′ = ci, P

′ = Pi \ {d2}, and P = Pi+1 \ {d2}. Also, if N [ci] does not meet

every shortest ci+1, b-path, then there exists a ci+1, b-path R of length k in G \N [ci].

Now c = ci+1, c
′ = ci, P

′ = Pi \ {d2}, and P = R satisfy the conclusion of the lemma.

On the other hand if dG(ci+1, b) = k and N [ci] does meet every shortest ci, b-path,

then by Lemma 12 there exists a diametral ci+1, d2-path Pi+1 that contains b which

we add to the end of our sequence.

If in our construction we never succeeded in producing the required c, c′, P, P ′ then

the construction must have terminated because we could not find a corner vertex cf+1

distinct from all the earlier ci. Thus we have constructed

c0 ≺P0 c1 ≺P1 c2 ≺P2 · · · ≺Pf−1 cf ≺Pf .

By Lemma 12 there is a corner vertex cf+1 w.r.t. (Pf , a) and so, by assumption, there

exists h in the set {0, 1, . . . , f − 1} such that cf+1 = ch. Suppose that h = f − 1.

Then we have (cf−1 = ch) ∼ Pf , a contradiction. Otherwise, we have h < f − 1. We

will prove that this leads to a contradiction.

Let P ′
h = ch−(Ph+1 \ {ch+1}) and let s, s′ be the first vertices in Ph, P

′
h following

ch. We will prove by reverse-induction that for all h + 1 < j ≤ f that cj ∼ s and

cj ∼ s′. This holds for j = f since cf+1 = ch and by construction N [cf ] meets every

shortest cf+1, b-path.

Now suppose that h + 1 < j < f . By the inductive hypothesis cj+1−(Ph \ {ch})

is a diametral cj+1, d2-path, and thus, since N [cj] meets every diametral cj+1, d2-path
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at its second vertex, cj ∼ s. Similarly, since cj+1−(P ′
h \ {ch}) is diametral, cj ∼ s′

(Fig. 2.4).

Finally, when j = h + 2 we reach a contradiction. We must have ch+2 ̸∼ s′ since

ch+1 is a corner w.r.t. (Ph+1, a) and s′ ∈ Ph+1. This contradiction establishes that

the construction must have terminated through one of the conditions that give us

appropriate c, c′, P, P ′.

Lemma 15 is also symmetric with respect to either vertex in a given dominating

pair. Applying the lemma twice, we find there are four vertices such that the removal

of the closed neighborhood of any one of them does not disconnect the remaining

three. These four vertices form an asteroidal set of size 4. Thus, we complete our

main result:

Theorem 16. Let G be a strict dominating pair graph. Either diam(G) ∈ {3, 4} or

an(G) ≥ 4.

We remark that the converse of the above theorem is not true. For example,

consider the graph shown on the left in Fig. 2.1. If a pendant is added to the

left-most black vertex, we obtain a graph that is HDP, has a dominating diametral

path, has asteroidal number 4, and has diameter 4. Interestingly, a similar result was

proven for directed path graphs that are non rooted path graphs by Gutierrez et al.

[22], who showed that these graphs necessarily contain an asteroidal quadruple.

The class of strict dominating pair graphs is infinite. Fig. 2.5 gives more examples

of graphs in this class. It is easy to construct infinitely many similar examples.

As stated by Corollary 10, strict dominating pair graphs have a diameter more

tightly constrained to the distance between any two dominating pair vertices than

HDP graphs in general. It is also easy to check that these graphs may not have

diameter less than or equal to 2. No linear-time method to compute the diameter is
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Figure 2.5: Strict dominating pair graphs. The graph on the left has diam(G) = 4
and an asteroidal quadruple, whereas the right-hand graph has diam(G) = 3 and
an(G) = 3.

known to exist for AT-free, HDP, or diametral path graphs even when a dominating

pair is given. Hence, we have proven the following corollary concerning the complexity

of diameter on this class of graphs.

Corollary 17. Let G be a strict dominating pair graph with a given dominating pair.

The diameter can be computed in linear-time.

Proof. Let (a, b) be the given dominating pair. We perform a breadth-first-search to

calculate dG(a, b). By Corollary 10, we have that diam(G) = dG(a, b) + 1.

2.4 Cut Sets in HDP Graphs

In this section, we explore the structure of graphs that have dominating pairs and

asteroidal triples, and show that dominating pair paths are necessarily “funnelled”

through the common neighborhood of some pair of each asteroidal triple. Our in-

tuition is that as asteroidal number increases, the placement of a dominating pair

path is restricted such that there are never more than two distinct points of contact

required to dominate an asteroidal set. We complete this section with an improved

algorithm for the recognition of chordal HDP graphs.
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2.4.1 Asteroidal Paths and Dominating Pairs

If a graph contains a dominating pair (a, b) and an asteroidal set S, then any

a, b-path P dominates every vertex in S. We define notation in order to more easily

refer to the outermost vertices in P that dominate vertices in S.

Definition 18. Let (a, b) be a dominating pair, let S be an asteroidal set, and let P

be an a, b-path. We denote by fP ( resp. ℓP ) the first ( resp. last) vertex of P that is

adjacent to any vertex in S. These exist since P dominates S. We let F P = N(fP )∩S

and LP = N(ℓP ) ∩ S. When necessary to distinguish, we will write F P
S and LP

S .

Certainly fP ∈ CN(F
P ) and ℓP ∈ CN(L

P ). It is possible that fP = ℓP . With the

following, we show that no such vertex is on any asteroidal path.

Proposition 19. Let G contain an dominating pair (a, b) and an asteroidal set S,

then if P is an a, b-path with fP = ℓP then S is an asteroidal set in G \ {fP}.

Proof. Since there is only one vertex in P , viz. fP = ℓP , that is adjacent to any

vertex in S, we have that fP dominates S, and in particular is not on any asteroidal

path for S.

Next, we discuss the cardinality of F P and LP , for a given dominating pair path

P .

Lemma 20. Let G be HDP. Given a dominating pair (a, b), an a, b-path P and an

asteroidal set S, then |F P | ≥ 2 or |LP | ≥ 2.

Proof. If F P or LP have size at least 2, we are done. Otherwise, suppose F P = {x}.

If LP = {x} then P [a, fP ]−x−P [ℓP , b] is an a, b-path not dominating any vertex in

S \ {x}. Suppose then w.l.o.g. that LP = {y}, with y ̸= x. Pick z ∈ S \ {x, y}. Since

S is an asteroidal set, there exists an x, y-path P ′ that does not dominate z. Now
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P [a, fP ]−P ′−P [ℓP , b] is an a, b-walk from which we can extract an a, b-path that does

not dominate z, a contradiction.

Pržulj, Corneil, and Köhler [24] investigated a subclass of HDP graphs called

frame HDP. Below, we give a definition of a frame HDP graph.

Definition 21. A frame hereditary dominating pair (frame HDP) graph G is a hered-

itary dominating pair graph with an asteroidal triple T such that all vertices of G are

on some asteroidal path with endpoints in T .

In particular, Pržulj, Corneil, and Köhler explored the location of dominating

pairs in frame HDP graphs and proved that such graphs have diam(G) ≤ 5. They

showed that every dominating pair satisfies strong constraints on the location of the

endpoints relative to the fixed asteroidal triple. Lemma 20 generalizes this by putting

constraints on all paths between any dominating pair of vertices.

x y

z

a

b
z′ y′

x′

x y

z b

a

Figure 2.6: Some HDP graphs that are not frame HDP. In each case vertices a, b are
not on any asteroidal path for T = {x, y, z} or T = {x′, y′, z′}.

An important result about the structure of HDP graphs is directly implied by

Lemma 20:
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Corollary 22. HDP graphs do not contain an asteroidal triple with 3-spread.

Proof. Let G be HDP. Given an asteroidal triple T with 3-spread, let H = G \

(CN(x, y)∪CN(y, z)∪CN(x, z)). H has a dominating pair (a, b) and contains T . Let

P be an arbitrary a, b-path. Then, by Lemma 20 one of fP , ℓP is in the common

neighborhood of some pair from T , a contradiction.

Diametral path graphs may contain asteroidal triples with arbitrarily large spread.

See, for instance, the right-hand graph in Fig. 2.1.

In Lemma 20, we proved that given a dominating pair (a, b) and an asteroidal

triple T , every a, b-path passes through the common neighborhood of some pair from

T . In fact, we will show in Theorem 26 that such a pair can be chosen uniformly

for all a, b-paths. Before we can prove such a theorem, we prove two useful lemmas.

For now, we apply Definition 18 with respect to asteroidal sets of cardinality 3 (i.e.,

asteroidal triples). Later, we will generalize these lemmas to graphs with greater

asteroidal number.

Lemma 23. Let G be HDP. Given a dominating pair (a, b), an AT {x, y, z} = T ,

and a, b-paths P and P ′, we have F P ∪ LP ′
= F P ′ ∪ LP = T .

Proof. By Lemma 20, either |F P | ≥ 2 or |LP | ≥ 2. W.l.o.g., suppose that F P =

{x, y}. If LP ′
contains z, then we are done. First we will show that F P ∪ LP ′

= T .

Otherwise, since LP ′
is not empty, we may suppose that LP ′

contains x. The walk

P [a, fP ]−x−P ′[ℓP
′
, b] contains an a, b-path that does not dominate z, a contradiction.

Now we will show that F P ′∪LP = T . By the first paragraph, applied with P = P ′,

we know that z ∈ LP . If {x, y} ⊆ F P ′∪LP we are done. Otherwise, w.l.o.g. x ̸∈ F P ′∪

LP . If y ∈ F P ′
then let R be an asteroidal y, z-path. The walk P ′[a, fP ′

]−R−P [ℓP , b]

contains an a, b-path that does not dominate x, a contradiction. Finally, the only
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remaining possibility is that F P ′
= {z}, in which case P ′[a, fP ′

]−z−P [ℓP , b] contains

an a, b-path that does not dominate x, a contradiction.

y x

z
ℓP

ℓP
′

a

b

CN(x, y)

CN(y, z)

fP

fP ′

P

P ′

Figure 2.7: Setup of the first part of Lemma 23. The a, b-walk P [a, fP ]−x−P [ℓP
′
, b]

does not dominate z.

At this stage, Lemmas 20 and 23 give us a strong understanding of how a domi-

nating pair path dominates asteroidal triples. Next, we give a lemma that describes

the orientation of two or more a, b-paths that meet the same common neighborhood

of some pair in an asteroidal triple.

Lemma 24. Let G be HDP. Given a dominating pair (a, b), an AT {x, y, z} = T ,

and two a, b-paths P and P ′, it cannot be that F P = LP ′
unless F P = LP ′

= T .

Proof. Suppose that F P = LP ′ ̸= T . W.l.o.g. F P contains x but not z. Then let

Q = P [a, fP ]−x−P ′[ℓP
′
, b]. From the walk Q, we can extract a path that does not

dominate z, a contradiction.

We prove an important lemma that will be useful for proving the proceeding

theorem.
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Lemma 25. Let G be HDP. Given dominating pair (a, b), an asteroidal triple T =

{x, y, z}, and two a, b-paths P, P ′, there exists a pair in T s.t. P and P ′ meet its

common neighborhood.

Proof. First note that if either path meets CN(T ), then by Lemma 20 the result holds.

Case 1. Suppose that one of the paths, w.l.o.g. P , has F P and LP disjoint, so

in particular one of them is a singleton. W.l.o.g. F P = {x, y} and LP = {z}. By

Lemma 23, F P ′
contains {x, y} and we are done.

Case 2. Otherwise, each of F P , LP , F P ′
and LP ′

have size 2. Then two of them

and equal and by Lemma 20 they cannot be contained on the same path; therefore,

we are done.

We are prepared to prove a major theorem that describes the structure of domi-

nating pair paths in asteroidal triples in HDP graphs.

Theorem 26. Let G be HDP. Given a dominating pair (a, b) and an asteroidal triple

T = {x, y, z}, there exists a pair Da,b ⊆ T s.t. all a, b-paths meet CN(Da,b).

Proof. Suppose for the sake of contradiction that P, P ′, and P ′′ are a, b-paths avoid-

ing CN(x, y), CN(x, z), and CN(y, z), respectively. Consider I = F P ∩ F P ′ ∩ F P ′′
.

Everything in J = T \ I is contained, by Lemma 23, in J = LP ∩ LP ′ ∩ LP ′′
. Thus

one of I, J has size at least 2, a contradiction.

Theorem 26 is important because it shows that an example like the one shown on

the left of Fig. 2.8 may not occur. The unique structure of asteroidal triples that are

allowed in HDP graphs shows that if (a, b) is a dominating pair in such a graph and

Da,b corresponds to some asteroidal triple T then either CN(Da,b)∩(a, b) is non-empty

or CN(Da,b) is a cut set in G.
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x y

z

x y

z

a

b

CN(x, z)

fP
ℓP

′

P

P ′

Figure 2.8: On the left, any pair of a, b-paths shown satisfy Lemma 25. But, Theorem
26 is contradicted. Dotted circles represent the the common neighborhoods of pairs
in the AT {x, y, z}. On the right, we detail that the left graph contains an a, b-walk
P [a, fP ]−z−P ′[ℓP

′
, b] that does not dominate y.

We have strengthened Lemma 20 with Theorem 26. Recall that they apply to

every asteroidal triple in an asteroidal set S. The next lemma generalizes Lemma 23

to asteroidal sets of arbitrary size.

Lemma 27. Let G be HDP. Given an asteroidal set S, a dominating pair (a, b), and

a, b-paths P and P ′, we have F P ∪ LP ′
= F P ′ ∪ LP = S.

Proof. Suppose that F P
S ∪LP ′

S ̸= S. By Lemma 20, one of F P
S and LP ′

S has size at least

2. W.l.o.g. we assume |F P
S | is at least 2. Therefore, we can pick x ∈ F P

S and y ∈ LP ′
S

with x ̸= y. By assumption, there exists z ̸∈ F P
S ∪ LP ′

S . Now we will consider F P
{x,y,z}

and LP ′

{x,y,z}. Since x ∈ F P
S and y ∈ LP ′

S , we have fP
S = fP

{x,y,z} and ℓP
′

S = ℓP
′

{x,y,z}.

By assumption, z belongs to neither of F P
{x,y,z} nor LP ′

{x,y,z}. This contradicts Lemma

23.

Next, we make a more general statement regarding all dominating pair paths

between a given dominating pair and asteroidal sets of any size in HDP graphs.
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a

b

z1 z2

z3

x y

Figure 2.9: Given a dominating pair (a, b) and letting P be an a, b-path on the left,
we have an HDP graph with F P ∪ LP = S. On the right, we show an example with
asteroidal number 5. White vertices denote the asteroidal set.

Theorem 28. Let G be HDP. Given an asteroidal set S and a dominating pair (a, b),

let F =
⋂
P

F P
S and L =

⋂
P

LP
S for all a, b-paths P . Then F ∪ L = S.

Proof. Suppose otherwise. There exists x ∈ S where x ̸∈ F and x ̸∈ L. Then, there

exist a, b-paths P ′, P ′′ such that x ̸∈ F P ′
S and x ̸∈ LP ′′

S . This contradicts Lemma

27.

Consider Fig. 2.9. In both graphs, the white vertices denote the asteroidal set S.

On the left graph we depict Theorem 28 where F = {x, y, z2} and L = {z1, z2, z3}.

On the right graph, we show a specific example of the more symbolic depiction shown

on the left.

In general, HDP graphs become inherently more dense as asteroidal number in-

creases. An interesting and extreme case of Theorem 28 is where F = S (or, L = S).

Then, it trivially holds that F ∪ L = S. Consequently, CN(F ) dominates S despite

CN(F ) being a cut set in G. Observe that CN(F ) does not establish S in this case,
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so the removal of CN(F ) leaves a connected, induced subgraph that contains the as-

teroidal set S, and this follows by Proposition 19. We demonstrate this case in the

right graph of Fig. 2.6.

2.4.2 On Networks and Faster Recognition of Chordal HDP Graphs

With respect to application of HDP graphs in critical systems or ad hoc networks,

Theorem 28 poses a problem. A cut vertex or cut set is naturally a point of weakness in

a network. Therefore, if one is interested in utilizing dominating pairs, the inclusion

of an asteroidal triple may necessitate the reinforcement of articulation vertices in

some manner. Certainly, such a restriction gives us greater control in regards to the

algorithmic complexity of certain problems in HDP graphs. The notion of spread, in

particular, is a useful algorithmic tool.

We present a method for faster recognition of chordal HDP graphs from a previous

best run-time of O(n7) in [24]. A complete set of forbidden subgraphs for the class of

chordal HDP graphs is shown in their paper and reproduced in Fig. 2.10. The

forbidden subgraphs have an asteroidal triple with 3-spread. Therefore, a faster

algorithm for recognition is apparent.

A1 Bn

n + 1321

Figure 2.10: Forbidden induced subgraphs for Chordal HDP graphs.
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Theorem 29. Chordal HDP graphs are exactly the graphs that are chordal and have

no asteroidal triples with 3-spread. In particular, chordal HDP graphs can be recog-

nized in O(n3.82).

Proof. If G contains an asteroidal triple with 3-spread, then by Corollary 22, G is

not HDP. On the other hand, if G contains no asteroidal triple with 3-spread, then

in particular it does not contain any of the forbidden subgraphs that characterize

chordal HDP graphs (see Fig. 2.10), and hence is chordal HDP.

Iterating through all asteroidal triples in a graph G requires time O(n2.82) [20].

Additionally, checking whether an asteroidal triple has 3-spread requires time O(n)

and can be accomplished as follows. Let T = {x, y, z} be any asteroidal triple in G.

We remove the sets CN(x, y), CN(y, z) and CN(x, z) from G to form subgraph H. We

check that T is an asteroidal triple in H, which requires linear time. If so, then T

has 3-spread. Lastly, it is well-known that checking that a graph is chordal is linear

[14]. Thus, the total time-complexity is O(n3.82).

2.5 Properties of HDP Graphs

In this section, we closely study the internal structure of graphs that do not have an

asteroidal triple with 3-spread. Then, we show how the structure is further restricted

if the graph is HDP. For such graphs, we also show that an asteroidal quadruple may

apply a constraint on diameter. Then, we investigate findings relating the diameter

of HDP graphs to vertices in polar pairs.

2.5.1 The Internal Structure of HDP Graphs

Recall that any three vertices in an asteroidal set form an asteroidal triple. We

utilize the hereditary nature of asteroidal sets to prove the following:
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Proposition 30. Let G contain no AT with 3-spread and let S be an asteroidal set.

If an(G) = t = |S|, then there are at least t− 2 pairs A ⊆ S s.t. CN(A) ̸= ∅.

Proof. Choose three vertices {x, y, z} ⊆ S. They form an asteroidal triple T for

which at least one pair has a non-empty common neighborhood (or we contradict the

definition of G).

Case 1: Exactly one pair A ⊆ T has a non-empty common neighborhood.

W.l.o.g. let A = {x, y}. We remove either x or y from S.

Case 2: Exactly two pairs in T have a non-empty common neighborhood. W.l.o.g.

let A1 = {x, y} and A2 = {x, z} s.t. CN(A1) ̸= ∅ and CN(A2) ̸= ∅. We remove y and

z from S.

Case 3: All three pairs in T have a non-empty common neighborhood. We remove

x, y, z from S.

We repeat the above cases until no asteroidal triples remain in S. After k vertices

have been removed, we have t − k vertices in S remaining, no asteroidal triple of

which has three pairs with non-empty neighborhoods. Thus, if t− k ≥ 3, we choose

any remaining T ⊆ S and repeat one of the above cases. With each step, we remove

either 1, 2, or 3 vertices from G and find just as many pairs in S with non-empty

neighborhoods in G. After t − 2 vertices have been removed, we have found t − 2

pairs in S with non-empty neighborhoods in G.

Next, we are interested in analyzing structure that is internal to any given aster-

oidal triple.

Lemma 31. Given an asteroidal triple T = {x, y, z} that does not have 3-spread,

suppose that CN(x, y) ̸= ∅. Let Px,z and Py,z be an asteroidal x, z-path and an aster-

oidal y, z-path, respectively. Let p ∈ Px,z \ {x} and q ∈ Py,z \ {y}. Then all p, q-paths

meet CN(x, y) or N [z].
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Proof. Suppose otherwise. Let P be a p, q-path that avoids CN(x, y) and N [z]. In

particular, p, q /∈ N [z], i.e., dG(z, p) ≥ 2 and dG(z, q) ≥ 2. Consequently, Px,z has

length 3 or more and avoids N [y] while Py,z has length 3 or more and avoids N [x].

Thus, W = Px,z[x, p]−P−Py,z[q, y] is an x, y-walk that avoids N [z] and CN(x, y).

From W we can extract an asteroidal x, y-path Px,y that in particular has length at

least 3. The paths Px,z, Py,z, Px,y certify that T has 3-spread, a contradiction.

Another way of phrasing the conclusion of Lemma 31 is that every induced x, y-

path of length 3 or more is non-asteroidal.

Notice that Lemma 31 is at its “weakest” when asteroidal number is 3 because

there are fewer possible candidates for z for a given pair of asteroidal vertices x, y.

Then, there is less restriction on the placement of paths between the asteroidal paths

that establish an asteroidal triple. We will show that Lemma 31 can be strengthened

on HDP graphs.

Lemma 32. Let G be HDP. Given an AT {x, y, z}, a dominating pair (a, b) and

an a, b-path P , let Px,z, Py,z be an asteroidal x, z-path and an asteroidal y, z-path,

respectively. Suppose that F P ⊇ {x, y} and LP ⊇ {z}. Then, every vertex in Px,z∪Py,z

is adjacent to fP or N [ℓP ].

Proof. W.l.o.g. suppose for the sake of contradiction that there exists p ∈ Px,z where

p ̸∼ fP and p ̸∼ N [ℓP ]. Notice that p ̸∼ y by the definition of the asteroidal path

Px,z. Let R = N [ℓP ] ∪ {y}. There exists an a, b-walk P [a, fP ]−Py,z−P [ℓP , b] that

must dominate p.

We claim that neither P [a, fP ] nor P [ℓP , b] are adjacent to p. Suppose v ∈ P [a, fP ]

is adjacent to p. Obviously p ̸= fP . We have that P [a, v]−Px,z[p, z]−P [ℓP , b] does

not dominate y, a contradiction. Suppose instead that v′ ∈ P [ℓP , b] is adjacent to p.



34

Obviously p ̸= ℓP . We have that P [a, fP ]−Px,z[x, p]−P [v′, b] does not dominate y, a

contradiction. We have proven the claim.

So, it is necessary that p ∼ Py,z. In particular, p ∼ Py,z \R. Let p be adjacent to

q ∈ Py,z \R. The path ⟨p, q⟩ (or in the case that p = q, the path ⟨p⟩) avoids CN(x, y)

and N [z], a contradiction to Lemma 31.

p q

CN(x, y)

N [z]

x y

z

Figure 2.11: This graph follows the proof of Lemma 31. The red path may not exist
since it does not meet N [z] or CN(x, y).

2.5.2 Asteroidal Quadruples and Diameter Bounds

Previously in Sect. 2.3 we showed that asteroidal quadruples are a key structural

attribute of strict dominating pair graphs with high diameter (see Theorem 16).

Interestingly, the existence of an asteroidal quadruple provides the opportunity for

diameter restriction in an HDP graph if a shortest dominating pair path meets it in

a specific way. To assist in our proof, for an asteroidal triple {x, y, z} let T z
x,y denote

an asteroidal x, y-path that avoids N [z].
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a b

w

zx

y

P2

P1

R
fP
A

ℓPA

Figure 2.12: Portraying the proof of Theorem 33. The red vertices are in F P
A \ S and

the blue vertices are in LP
A \ S. The gray paths depict W .

Theorem 33. Let G be HDP. For some dominating pair (a, b), an asteroidal set A,

and a shortest a, b-path P , let S = F P
A ∩ LP

A. If F P
A \ S ≥ 2 and LP

A \ S ≥ 2 then

diam(G) ≤ 12.

Proof. Suppose for the sake of contradiction that diam(G) > 12. Let {w, x, y, z} ⊆ A

be an asteroidal set formed of two vertices x, y ∈ F P
A \S and two vertices w, z ∈ LP

A\S.

By Lemma 32, for some asteroidal paths T y
x,z and T x

y,z we have that all vertices in

T y
x,z∪T x

y,z are adjacent to fP
A or N [ℓPA]. Therefore, any shortest fP

A , ℓ
P
A-path has length

at most 4. In particular, R = P [fP
A , ℓ

P
A] has length at most 4.

We will show that dG(a, f
P
A ) ≥ 4 or dG(b, ℓ

P
A) ≥ 4. Suppose otherwise. Let

Ra = P [a, fP
A ] and Rb = P [ℓPA, b]. The paths Ra, Rb are shortest paths with lengths

at most 3. The walk Ra−R−Rb contains an a, b-path with length at most 10. By

Corollary 10 we have that diam(G) ≤ 12, a contradiction. W.l.o.g. suppose that

dG(a, f
P
A ) ≥ 4.

We will show that every induced T z
w,y and every induced Tw

z,x avoid N [a]. Suppose

not. W.l.o.g. let U be an induced T z
w,y that meets N [a]. Let u be the first vertex

in U that is adjacent to a. The a, b-walk a−U [u,w]−Rb must dominate y and this

is only possible if u ∈ N [y] ∩ U (recall that U is an induced w, y-path and that Rb



36

cannot be adjacent to y because y ̸∈ LP
{w,x,y,z}). There exists a walk ⟨a, u, y, fP

A ⟩ of

length at most 3, a contradiction to dG(a, f
P
A ) ≥ 4. We have proven the claim. Let P1

and P2 be an induced T z
w,y and an induced Tw

z,x, respectively, respectively, that each

avoid N [a]. Let M = ⟨y, fP
A , x⟩ and let W = P1−M−P2. See Fig. 2.12. Note that

M clearly avoids N [a] since dG(a, f
P
A ) ≥ 4.

In order to complete the prove of the theorem, it suffices to show that T ′ =

{a, w, z} is an asteroidal triple that has 3-spread, contradicting our assumption that

G is HDP. W is a concatenation of asteroidal paths P1 and P2 that avoid CN(w, z)

together with a path M that avoids CN(w, z) (i.e. M avoids CN(w, z) because

fP
{w,x,y,z} ̸∈ CN(w, z) and the vertices of A are non-adjacent by the definition of an

asteroidal set). This fact together with W ∩ N [a] = ∅ implies that a w, z-path J1

of length 3 or more that avoids N [a] can be extracted from W . An a, z-path J2 of

length 3 or more that avoids N [w] can be extracted from the walk P [a, fP
A ]−P2. A

similar path J3 that avoids N [z] can be extracted from the walk P [a, fP
A ]−P1. The

paths J1, J2, and J3 establish that T ′ has 3-spread, a contradiction.

Theorem 33 can also be stated as follows: The diameter of an HDP graph is less

than or equal to 12 if each half of an asteroidal quadruple is uniquely contained in F P

and LP for any shortest a, b-path P . Moreover, we can easily see that the hypotheses

of Theorem 33 hold for any HDP graph containing an asteroidal quadruple A where

any three vertices in A have an empty common neighborhood.

Among the literature, Theorem 33 provides yet another sufficient condition relat-

ing asteroidal sets to diameter restriction in an HDP graph. To wit, it has also been

shown [24] that a frame HDP graph G has diam(G) ≤ 5.
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a b

Figure 2.13: An HDP graph having diam(G) = 5. The unfilled vertices form an
asteroidal quadruple A. For any a, b-path P , the red vertices are F P

A and the blue
vertices are LP

A. If a pendant vertex p is added to b (thus increasing the diameter),
then the red vertices along with p are an asteroidal triple with 3-spread. A similar
technique is employed in the proof of Theorem 33.

2.5.3 On Maximum Eccentricity

In this subsection, we present additional distance-related findings beyond those

given in Sect. 2.3. An especially strong property of a graph is to have a so-called

polar pair. The following definition is essentially equivalent to what is originally given

in [8].

Definition 34. A pair (X, Y ), where X, Y ⊆ V , is polar if X ∩ Y = ∅ and a pair of

vertices x, y is a dominating pair if and only if exactly one of them is in each of X

and Y .

We will present some diameter results for any graph G having a polar pair. The

main result of this subsection (Theorem 37) shows that a dominating pair vertex

satisfying a special property with respect to a polar pair has eccentricity equal to

diam(G).

We remark that AT-free graphs having diam(G) ≥ 4 and graphs with a dominating

pair having diam(G) ≥ 5 are certain to contain a polar pair [8, 24]. Moreover, such a

pair can be computed in linear time if G is AT-free [7]. At low diameter, the vertices

of dominating pair vertices cannot be partitioned in such a way as to satisfy Definition
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34. For example, it is easily verified that the cycle C5, which is AT-free, does not have

a polar pair. The following preliminary result is obtained from [8] (see their Theorem

4.3).

Lemma 35. [8] In every connected AT-free graph some dominating pair is a diametral

pair.

Our main results rely on certain nice properties provided by polar pairs.

Lemma 36. Let G be a graph having a polar pair (X, Y ). W.l.o.g. let A be a maximal

clique in X. Then, A contains some vertex a where ecc(a) = diam(G).

Proof. Suppose otherwise. By Lemma 35 and Definition 34, some pair (d1, d2) ∈

(X, Y ) is diametral. W.l.o.g. let D1 ⊆ X be a maximal clique containing d1. If

d1 ∈ A ∩ D1 then a := d1 and we are done. Thus, there exists a vertex x ∈ A such

that x ̸∼ d1, otherwise we contradict the maximality of A. We assume that x cannot

be set to a, otherwise we are done.

The pair (d1, d2) is diametral but (x, d2) is not because ecc(x) < diam(G). So,

diam(G) > dG(x, d2). Let P = ⟨x = v0, v1, . . . , vk−1, vk = d2⟩ be a shortest x, d2-path.

Since (x, d2) is a dominating pair, P must dominate d1. Since x ̸∼ d1, we have that

d1 ∼ vi for some i > 0. Let Q = ⟨vi, . . . , d2⟩ ⊂ P . Any shortest path extracted

from d1−Q has length less than or equal to dG(x, d2), a contradiction to the fact that

dG(d2, d2) = diam(G).

It is known that linear diameter computation of an AT-free graph is unlikely due to

an existing reduction to computing a simplicial vertex in a general graph [9]. Instead,

we consider a special dominating pair vertex, that is not guaranteed to exist, but

which can be used as a “shortcut” to fast diameter computation. We are prepared to

prove the main result of this section.
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Theorem 37. Let G be a graph with diam(G) > 4 and let (X, Y ) be a polar pair in

G. Every vertex a where N [a] ⊆ X or N [a] ⊆ Y has ecc(a) = diam(G).

Proof. W.l.o.g. let x ∈ X have N [x] ⊆ X. For the sake of contradiction suppose that

ecc(x) < diam(G). Let y ∈ Y and let dG(x, y) = k. Note that k < diam(G). Any

shortest x, y-path P must meet N(x). Let v = P ∩ N(x). Notice that v ∈ X and

that dG(y, x) = dG(y, v) + 1.

The pair (v, y) is a dominating pair by definition of (X, Y ). By Lemma 9, there

exists pair (d1, d2) such that d1 ∈ N [v] and d2 ∈ N [y]. The path R = P \ {x} is a

shortest v, y-path of length k − 1. If dG(d1, d2) = k then P (which also has length

k) is diametral and so ecc(x) = diam(G), a contradiction. Since dG(d1, d2) may not

exceed the length of d1−R−d2, we have that dG(d1, d2) = k + 1 = diam(G).

We will show that ecc(v) < diam(G). Suppose not. For some vertex b we have

that (v, b) is diametral and thus dG(v, b) = k + 1. Recall that R is a dominating

v, y-path of length k − 1. In particular, b ∼ R. Let t be the first vertex in R that is

adjacent to b. Consequently, R[v, t]−b has length at most k, a contradiction to the

value of dG(v, b). We have shown that ecc(v) < diam(G).

The set {x, v} ⊆ X is a clique on 2 vertices. By Lemma 36, since for each vertex

u ∈ {x, v} we have that ecc(u) < diam(G), this clique is not maximal. There exists a

clique {v, w, x} ⊆ X such that ecc(w) = diam(G) to satisfy Lemma 36. Let (w, d) be

a diametral pair. Let Q be a shortest x, d-path. The length of Q is k, otherwise w−Q

has length less than k+1, a contradiction to the value of dG(w, d). Let u = Q∩N(x).

Note that (u, y) is a dominating pair. See Fig. 2.14 for this stage of the proof.

Let D1 = Q \ {x} and let D2 be a shortest d, y-path. Of course, D1 has length

k− 1. Since we have shown that diam(G) = k+1, path D2 has length at most k+1.

Moreover, D1−D2 is a dominating u, y-walk. In particular, this walk dominates w.
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Suppose that w ∼ D1. Let w ∼ u. The path w−D1 has length k, a contradiction to

the fact that dG(w, d) = k + 1. A similar contradiction occurs for any p ∈ D1 \ {x}

where w ∼ p. Therefore, w ̸∼ D1 and it is necessary that w ∼ D2.

Let f be the first vertex in D2 that is adjacent to w. Recall that D2 has length at

most k+1. If f ̸∈ N [y] then the pathD2[d, f ]−w has length at most k, a contradiction

to the value of dG(w, d). Thus, f ∈ N [y]. The walk ⟨y, f, w, x⟩ has length at most 3.

It follows that k ≤ 3 and diam(G) ≤ 4, a contradiction.

vx
y

d2d1

w d

u

k − 1

k + 1

k + 1

Figure 2.14: Depicting the proof of Theorem 37. The red path is R in the proof, the
green path is Q in the proof, and the blue paths are diametral.

It is easy to see that a vertex a satisfying Theorem 37 can be computed via

comparing edge incidence between X, Y , and G. If (X, Y ) can be computed in

linear-time, as it can be when G is AT-free and has diam(G) ≥ 4 [7], then a provides

a special case for fast diameter computation.
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Chapter 3

Polar Targets

A dominating pair in a graph G is a pair of vertices s, t such that every path

connecting them dominates the graph. It is well-known, for instance, that any as-

teroidal triple-free graph contains a dominating pair. A much stronger property of

a graph is that there are two subsets S, T ⊆ V such that the dominating pairs in G

are exactly all pairs taking one vertex from S and one vertex from T . Such a pair of

subsets is called a polar pair. For instance, polar pairs are known to exist in asteroidal

triple-free graphs with sufficiently high diameter.

In this chapter, we introduce the notion of a polar target, a collection of subsets

T1, T2, . . . , Tk ⊆ V such that D is a dominating target of size k (i.e. any connected

superset ofD dominatesG) if and only if |D∩Ti| = 1 for all i. Our main contribution is

to prove that ifG has a dominating 4-distant asteroidal triple then it has a polar target

of size 3. Along the way, we develop strong results about the possible interactions

between dominating targets and asteroidal sets.

3.1 Introduction

A dominating target is a set of vertices such that every connected superset is

a dominating set. The dominating target number of G, denoted by dt(G), is the



42

cardinality of a smallest dominating target. Special graphs with bounded dt(G) have

been studied for their diametral and domination properties. For example, Kloks et

al. [17] studied the spanning trees of such graphs and Aggarwal et al. [1] investigated

classical algorithmic problems on graphs with small dt(G).

A significant connection has been established between dominating targets and

asteroidal sets (see Definition 38). In particular, much is known about the class of

asteroidal triple-free (AT-free) graphs, the class of graphs having an(G) ≤ 2. Notably,

these graphs form a common superclass of the interval and co-comparability graphs.

Corneil et al. [8] proved that AT-free graphs have a dominating pair, a dominating

target of size at most 2. Since that discovery, the structure of graphs with dominating

pairs and asteroidal sets has gained attention [2, 24], and in this paper we investigate

the more general relationship between a dominating target and an asteroidal set of

arbitrary size. The results of our paper are organized in the following way.

In Sect. 3.3, we show that asteroidal sets impose strong restrictions on dominating

targets. For example, we prove that every connected superset of a dominating target

contains a (quickly identifiable) vertex set of size at most dt(G) that dominates any

given asteroidal set.

In Sect. 3.4, we investigate the notion of polarity of dominating targets. Whereas

similar results have been proved for graphs having dominating pairs [8, 7, 24], no such

results have been shown for graphs with dt(G) ≥ 3. We generalize the concept of a

polar pair (see Definitions 34 and 49) to that of a polar target. Our main result is to

prove that if a graph G contains a dominating triple that is also a 4-distant asteroidal

triple then G has a polar target of size 3. This result provides algorithmic benefits

and can be used to reduce the time-complexity of computing dominating triples.



43

3.2 Preliminaries

Our graph theory notation basically follows that of Golumbic [14] and of Chapter

2, with some adjustments (i.e. the definition of an asteroidal set accounts for sizes

1 and 2). Our graphs are always simple, undirected, and finite. When no risk of

confusion arises, we will use V to denote the vertex set of G and E to denote its edge

set. We let n = |V |. We write u ∼ v to indicate that vertices u and v are adjacent.

More generally if S, T ⊆ V we write S ∼ T if there exists u ∈ S and v ∈ T such that

u ∼ v.

As is standard, if S ⊆ V we write N(S) = {y : ∃x ∈ S such that x ∼ y} for the

(open) neighborhood of S and N [S] = N(S) ∪ S for the closed neighborhood of S.

A set S dominates a set T ⊆ V if T ⊆ N [S]. We denote by CN(S) the common

neighborhood of S. Formally,

CN(S) =
⋂
v∈S

N(v).

A sequence of vertices P = ⟨u = x0, x1, . . . , xk−1, xk = v⟩ is called a walk if xi ∼

xi+1 for all i ∈ {0, 1, . . . , k − 1}. We say P is a path if the vertices x0, x1, . . . , xk

are all distinct. A walk with endpoints u and v is called a u, v-walk. If v ∼ v′

then we denote by P−v′ the walk ⟨u = x0, x1, . . . , xk−1, xk = v, v′⟩. Similarly, if

P = ⟨x0, x1, . . . , xk⟩ and P ′ = ⟨y0, y1, . . . , yq⟩ are walks and xk ∼ y0, then we let

P−P ′ = ⟨x0, . . . , xk, y0, . . . , yq⟩. We write P [xi, xj] where (0 ≤ i ≤ j ≤ k) for the

subwalk ⟨xi, . . . , xj⟩ of P . It is well known that every u, v-walk contains a u, v-path.

We say a walk P meets some set S if P ∩S ̸= ∅ and that P avoids S if P ∩S = ∅.

The notation dG(u, v) denotes geodesic distance, the number of edges along a shortest

path, between the vertices u and v in the graph G. The diameter of G is the greatest
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geodesic distance between any two vertices in G. The eccentricity ecc(v) of a vertex

v is the greatest geodesic distance between v and some other vertex in G.

Definition 38. An asteroidal set A is an independent set of vertices such that, for

every vertex v ∈ A, there exists a path between any two remaining vertices of A \ {v}

that avoids N [v]. We call such a path an asteroidal path. The cardinality of the

largest asteroidal set in a graph is known as the asteroidal number of that graph,

denoted by an(G). An asteroidal triple is an asteroidal set of size 3.

Definition 39. A set {x1, x2, . . . , xk} is k-distant if dG(xi, xj) ≥ k for all i, j ∈ [1, k]

such that i ̸= j.

Definition 40. A dominating target T is a set of vertices such that every connected

superset of T is a dominating set.

The standard definition of a a dominating pair is that it is an ordered pair of

vertices such that any path between them is dominating. In particular, a dominating

pair need not correspond to a dominating target of size 2, it might have size 1.

Similarly, in the literature, a dominating triple is a dominating target of size at most

3. More recently, dominating triples have been studied for their diameter properties

[9]. It will be convenient for our proofs to have a name for a special combination of

properties a triple might have:

Definition 41. A triple is golden if it is a dominating triple and a 4-distant asteroidal

triple.

3.3 Asteroidal Sets and Dominating Targets

In this section, we explore the interaction between asteroidal sets and connected

supersets of dominating targets.
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Definition 42. Let D = {x1, x2, . . . , xk} be a dominating target, let P be an x, y-path

for some x, y ∈ D, and let A be an asteroidal set. We denote by fP ( resp. ℓP ) the

first ( resp. last) vertex of P that is adjacent to A. These exist when P meets any

vertex neighboring A. We let F P = N(fP ) ∩ A and LP = N(ℓP ) ∩ A.

Remark. Note that any given path P in Definition 42 does not necessarily meet

any vertex in the neighborhood of A. Then, neither fP nor ℓP exist and we have that

F P = LP = ∅.

The relationship between an(G) and the size of some dominating target in G can

be expressed by the following known result.

Proposition 43. [17] Every graph G has dt(G) ≤ an(G).

For the purpose of better understanding a dominating target D, we consider a

minimal, general form of any connected superset of D. Such a superset satisfies a

special property.

Lemma 44. Given a dominating target D = {x = x1, x2, . . . , xk} and an asteroidal

set A, then for every {P2, P3, . . . , Pk} consisting of an x, xi-path for each 2 ≤ i ≤ k,

we have ⋃
i∈[2,k]

F Pi ∪ LPi = A.

Proof. Suppose otherwise. There exists a {P2, . . . , Pk} and a ∈ A with a not in

the above union. Among all such collections of paths with a not in the union, let

{R2, R3, . . . , Rk} be one such that the smallest number of the paths dominate a. Since

D is a dominating target, at least one of the paths dominates a.

Let Ri be a path that is adjacent to a. Since a is dominated by Ri but not in

either FRi or LRi we must have that fRi ̸= ℓRi and that all vertices of Ri dominating

a are strictly between fRi and ℓRi on Ri. Let b ∈ FRi and c ∈ LRi .
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If b ̸= c, then we let Q be an asteroidal b, c-path that does not dominate a, which

exists because any three vertices in A are an asteroidal triple by Definition 40 and

thus {a, b, c} is an asteroidal triple. (If b = c, then we let Q be the one vertex

path ⟨b⟩.) Let W = Ri[x, f
Ri ]−Q−Ri[ℓ

Ri , xi] and let R′
i be any x, xi-path that can

be extracted from the walk W . Then {R2, R3, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk} has fewer

paths dominating a, a contradiction to our choice of {R2, . . . , Rk}.

x xi
fRi ℓRi

b c

a

Q

Figure 3.1: We depict the proof of Lemma 44. The bold path is R′
i and the unfilled

vertices are an asteroidal triple.

Next, we strengthen the above lemma for all paths beginning with x and ending

in D \ {x}. Together, these paths provide a stronger restriction on the connected

supersets of D.

Lemma 45. Given a dominating target D = {x = x1, x2, . . . , xk} and an asteroidal

set A, let P be the collection of all x, xi-paths for any 2 ≤ i ≤ k. Let

FD,x =
⋂
P∈P
FP ̸=∅

F P , LD,x =
⋃
P∈P

LP .

Then some P ∈ P has F P ̸= ∅. Moreover, FD,x ∪ LD,x = A.

Proof. We first show that some P ∈ P has F P ̸= ∅. Suppose not. Every P ∈ P

has F P = ∅. For all i, we take a single x, xi-path Pi to form a collection of paths

{P2, P3, . . . , Pk}. By assumption, every P ∈ {P2, . . . , Pk} has F P = ∅. Thus, by
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Lemma 44 we have that LP2 ∪ LP3 ∪ · · · ∪ LPk = A. So, some LPi′ ̸= ∅. Because ℓPi′

exists, certainly fPi′ exists. Therefore, F Pi′ ̸= ∅, a contradiction.

Next, we will prove the second part of the lemma. Suppose for the sake of con-

tradiction that there exists a vertex a ∈ A \ (FD,x ∪LD,x). In particular, there exists

a ∈ A such that a ̸∈ LD,x, i.e. there exists no x, xi-path P with a ∈ LP . Since

a ̸∈ FD,x, there exists 2 ≤ j ≤ k and an x, xj-path Pj such that F Pj ̸= ∅ and a ̸∈ F Pj .

W.l.o.g. we may assume j = k. For all 2 ≤ i ≤ k− 1, pick an arbitrary x, xi-path Pi.

By Lemma 44, we have that
⋃

F Pi∪LPi = A for each i ∈ [2, k]. For each i < k, we

will create a replacement path Ri. We will construct a set of paths {R2, R3, . . . , Rk−1}

such that the union of the Ri’s together with Pk is a connected superset of D that

does not dominate a. This contradiction will prove the result.

For 2 ≤ i ≤ k − 1, if LPi = ∅ then let Ri = Pi. Otherwise, we know that F Pi

and LPi are non-empty. Pick b ∈ F Pk and ci ∈ LPi , noting that neither b nor ci

is equal to a. Let Qi be an asteroidal b, ci-path that avoids N [a]. (If b = ci then

let Qi be the path ⟨b⟩). Now let Ri = Pk[x, f
Pk ]−Qi−Pi[ℓ

Pi , xi]. The union of the

Ri’s together with Pk forms a connected superset of D that does not dominate a, a

contradiction.

For examples of Lemma 45 where FD,x is non-empty and empty, see Fig. 3.2 and

Fig. 3.3, respectively. We immediately make the following observation.

Corollary 46. Under the hypotheses of Lemma 45, if FD,x is non-empty then either

D ∩ CN(FD,x) is non-empty or CN(FD,x) is a cut-set in G.

Proof. Assume that FD,x is non-empty and that D ∩ CN(FD,x) is empty. Let y ∈

D \ {x}. Every x, y-path meets CN(FD,x). Thus G \ CN(FD,x) contains the vertices

x, y but they are in different components.
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x

x2

x3

x4

fP2 = fP3

fP4

ℓP2

ℓP4

ℓP3

Figure 3.2: Let D = {x = x1, . . . , x4} be a dominating target and let the unfilled
circles be an asteroidal set. Let P2, P3, P4 be paths beginning at x and ending at
x2, x3, x4, respectively. The red vertices form set FD,x and the blue vertices form set
LD,x (see Lemma 45). We have circled CN(FD,x) for clarity.

Theorem 47 generalizes a result from Sect. 2.3 with dt(G) ≤ 2 (see Theorem 28).

Theorem 47. Under the hypotheses of Lemma 45, we have that FD,x1 ∪FD,x2 ∪ · · ·∪

FD,xk
= A.

Proof. Suppose otherwise and that a ∈ A \ (FD,x1 ∪FD,x2 ∪ · · · ∪FD,xk
). Thus, for all

1 ≤ i ≤ k there exists a path Pi from xi to D \ {xi} such that F Pi ̸= ∅ by Lemma 45

and a ̸∈ F Pi . Let Ri = Pi[xi, f
Pi ] and let M be a connected superset of A formed from

the asteroidal paths between pairs in A that avoid N [a]. Notice that each fPi ∈ Ri

is adjacent to M . The subgraph induced by the union of M and the Ri’s forms a

connected superset of D that does not dominate a, a contradiction.

Remark Theorem 47 clearly implies that every connected superset of D contains



49

x

x2 x3

x4

ℓP

fP

LP

F P

x

x2 x3

x4

fP

ℓP

F P

LP

Figure 3.3: Let the unfilled vertices be an asteroidal set A and let D = {x =
x1, x2, x3, x4} be a dominating target. On the left (resp. right) we show an x, x2-
path (resp. x, x4-path) P using red (resp. blue) edges. Although FD,x = ∅, we have
that A = LD,x as evidenced by the colored paths, so the second conclusion of Lemma
45 is satisfied. Notice that A = FD,x3 satisfies Theorem 47. It is also satisfied by
A = FD,x2 ∪ FD,x4 .

a vertex set of size at most dt(G) that dominates A.

Intuitively, we have shown that all connected supersets of a dominating target D

are necessarily “funneled” through CN(FD,xi
) for each i that has a non-empty FD,xi

.

For instance, if a graph has dt(G) < an(G), then there exists an i and a corresponding

set FD,xi
of size at least two. Then, CN(FD,xi

) is more greatly restricted. Corollary

46 tells us that the removal of CN(FD,xi
) either removes xi or disconnects xi from the

rest of the graph.

3.4 Polar Targets

In this section, we generalize the concept of a polar pair to graphs with dt(G) > 2.

We define the notion of a polar target (see Definition 49). We give a sufficient (but

not necessary) condition for the existence of a polar target of size 3. The following

definition is equivalent to that appearing in [8], where the notion of polar pairs was
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studied (note that the authors introduced the concept, but not the term polar pair).

Definition 48. A pair (X, Y ), where X, Y ⊆ V , is polar if X ∩ Y = ∅ and a pair of

vertices x, y is a dominating pair if and only if exactly one of them is in each of X

and Y .

It has been proven that AT-free graphs of diameter at least 4 have a polar pair [8].

It has also been shown that graphs having both a dominating pair and a diameter of

at least 5 have a polar pair [24]. At any lower diameter, a polar pair is not guaranteed

to exist. Certainly, a polar pair does not exist if dt(G) ≥ 3. Therefore, we introduce

the concept of polar targets as an analog to polar pairs for graphs with dt(G) > 2.

Definition 49. Given a graph with dt(G) = k ≥ 2, a disjoint collection X1, X2, . . . ,

Xk of subsets of V is a polar target if the set of all dominating targets of size dt(G)

is precisely the collection of all sets D having |D ∩Xi| = 1 for all i.

Chordless cycles are interesting as they have no polar target of any size.

Proposition 50. For all n ≥ 3, we have dt(Cn) = ⌈n/3⌉.

Proof. Clearly there is a set of vertices S = {v1, v2, . . . , vk} where k = ⌈n/3⌉,

d(vi, vi+1) = 3 for i = 1, 2, . . . , k − 1 and d(vk, v1) ≥ 3. S is a dominating tar-

get, so dt(Cn) ≤ ⌈n/3⌉. Let T ⊆ V (Cn) have size t < n/3. Label the vertices of T

cyclically as {w1, w2, . . . , wt}. Then

3t < n =
t∑

i=1

d(wi, wi+1),

where indices are computed cyclically. Hence at least one of these distances is at least

4. If d(wi, wi+1) ≥ 4 then a path from wi+1 to wi going the long way around the cycle

is a connected superset of T but not a dominating set. Thus dt(Cn) ≥ ⌈n/3⌉.
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x y

z

a b

Figure 3.4: The left graph is a cycle on 9 vertices that does not contain a polar target
of any size. Notice that every dominating triple is 3-distant, and no larger cycle graph
exists such that dt(G) = 3 by Proposition 50. The right graph contains a dominating
triple (x, y, z) that is golden. A polar target {X1, X2, X3} of size dt(G) = 3 exists
where X1 = {x, a}, X2 = {y, b}, and X3 = {z}.

Example 50.1. For all k ≥ 2 if we let n = 3k then Cn has dt(Cn) = k but no polar

target. In particular, if D is a dominating target of size k then so is D′ obtained by

shifting every vertex of D clockwise by 1 (see the left graph in Fig. 3.4).

The main result of this section, Theorem 57, gives a sufficient condition for the

existence of a polar target of size 3 in graphs with dt(G) = 3. It builds on a sequence

of lemmas which we will now begin.

Lemma 51. Let G be a graph with dt(G) = 3 and let (x1, x2, x3), (y1, y2, y3) be

dominating triples such that (x1, x2, x3) is golden. Let S be a connected superset

of (y1, x2, x3) that does not dominate d. Then there exists i ∈ {2, 3} such that all

x2, yi-paths and all x3, yi-paths dominate d.

Proof. Suppose otherwise. W.l.o.g. let P be an induced x2, y2-path that does not

dominate d. Either there exists an induced x2, y3-path that does not dominate d or

there exists an induced x3, y3-path that does not dominate d. Let P ′ be such a path
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in either case. Then, S ∪P ∪P ′ induces a connected superset of (y1, y2, y3) that does

not dominate d, a contradiction.

Next, we consider the interaction between a golden triple and any other given

dominating triple.

To assist in our proof, for an asteroidal triple {a, b, c} let Ac
a,b denote an asteroidal

a, b-path that avoids N [c]. More generally, let a ↔c b denote an a, b-walk that avoids

N [c]. Finally, we will borrow the terminology of a d-octopus, originally given by

Fomin et. al. [12], in order to describe connected supersets of a dominating target.

We consider a weaker variant, which we define as follows:

Definition 52. A weak d-octopus of a graph is a dominating subgraph whose vertices

are the union of d walks that have one endpoint in common.

We are prepared to begin the lemma.

Lemma 53. Given a graph G with dt(G) = 3, let T = (x, y, z), T ′ = (a, b, c) be

dominating triples such that T is golden. Either (a, y, z), (b, y, z), or (c, y, z) is a

dominating triple.

Proof. Suppose otherwise. Let Pa,y, Pa,z be induced paths with endpoints (a, y), (a, z),

respectively, whose union is a connected superset of (a, y, z) that does not dominate

some vertex u. Similarly, there exist induced paths Pb,y, Pb,z and Pc,y, Pc,z with end-

points (b, y), (b, z) and (c, y), (c, z) whose union does not dominate v and w, respec-

tively.

The union of these six named paths is a dominating, connected superset of T ′ so

at least one of the these paths must be adjacent to x. W.l.o.g. suppose that x ∼ Pa,z.

Now Pa,y ∪ Pa,z ∪ {x} is a dominating, connected superset of T . Therefore, x ∼ u

because we have assumed that x ̸∼ (Pa,y∪Pa,z). By Lemma 51, where (x1, x2, x3) := T ,
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(y1, y2, y3) := T ′, S := (Pa,y ∪ Pa,z), and d := u, there exists an i ∈ {b, c} such that

all y, i-paths and all z, i-paths dominate u. W.l.o.g. suppose that all y, b-paths and

all z, b-paths dominate u.

Let fx be the first vertex in Pa,z that is adjacent to x and let fu be the first

vertex in Pb,y that is adjacent to u. By assumption, any path taking the form of

⟨x, u, fu, . . . , y⟩ has length 4 or more and thus dG(fu, y) > 1. At this stage of the

proof, our setup matches the left graph shown in Fig. 3.5. Let a ↔z x = Pa,z[a, fx]

−x, x ↔y b = ⟨x, u⟩−Pb,y[fu, b], and R = Ay
x,z−Pc,z. Thus, a ↔z x, x ↔y b, R (each

walk having an endpoint x) establish a weak 3-octopus containing T ′ where y may

only be adjacent to vertices in Pa,z[a, fx] or Pc,z.

x

y

z

a c

b

u
fx

fu

x

y

z

u

v

p

p′

wM

Figure 3.5: The left graph shows the setup of Lemma 53 right before entering Cases
1 or 2. We depict the initial six named paths Pa,y, . . . , Pc,z with a as an endpoint in
red, b as an endpoint in blue, and c as an endpoint in green. The right graph depicts
the proof of Lemma 55.

Case 1: y ∼ Pc,z and y ̸∼ Pa,z[a, fx]. Let fy be the first vertex in Pc,z that

is adjacent to y and let f ′
u be the first vertex in Pb,z that is adjacent to u. Notice

that fy ̸∼ z, otherwise dG(y, z) = 2. Next, let x ↔z b = ⟨x, u⟩−Pb,z[f
′
u, b] and

x ↔z c = Az
x,y−Pc,z[fy, c]. Now a ↔z x, x ↔z b, x ↔z c (each walk having an

endpoint x) establish a weak 3-octopus containing T ′ that does not dominate z, a
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contradiction.

Case 2: y ∼ Pa,z[a, fx]. Let fy be the first vertex in Pa,z that is adjacent to

y. In particular, note that fy ̸= fx, otherwise dG(x, y) = 2. Next, let a ↔x z =

Pa,z[a, fy]−Ax
y,z. Now a ↔x z, Pb,z, Pc,z (each walk having a endpoint z) establish a

weak 3-octopus containing T ′ such that it is only possible that x is adjacent to Pb,z

or Pc,z.

Case 2.1: x ∼ Pc,z and x ̸∼ Pb,z. Let f ′
x be the first vertex in Pc,z that is

adjacent to x. Notice that f ′
x ̸∼ z, otherwise dG(x, z) = 2. Let f ′

u be the first vertex

in Pb,z that is adjacent to u (noting that f ′
u ̸∼ z), let c ↔z x = Pc,z[c, f

′
x]−x, and

let x ↔z b = ⟨x, u⟩−Pb,z[f
′
u, b]. Now a ↔z x, c ↔z x, x ↔z b (each walk having

endpoint x) establish a weak 3-octopus containing T ′ that does not dominate z, a

contradiction.

Case 2.2: x ∼ Pb,z. We have that Pb,y ∪ Pb,z ∪ {x} is a connected superset of T .

We have that v ∼ x because v ̸∼ (Pb,y ∪ Pb,z) by assumption. By Lemma 51, where

(x1, x2, x3) := T , (y1, y2, y3) := (b, a, c), S := (Pb,y ∪ Pb,z), and d := v, we have that

there exists an i′ ∈ {a, c} such that all y, i′-paths and all z, i′-paths dominate v.

We will show that i′ = a. To do so, we suppose that some induced z, c-path

dominates v. Let fv be the first vertex in Pc,z that is adjacent to v. Note that

fv ̸∼ z, otherwise dG(x, z) ≤ 3 by the existence of path ⟨x, v, fv, z⟩. There exist x ↔z

c = ⟨x, v⟩−Pc,z[fv, c] and x ↔z b = ⟨x, u⟩−Pb,z[f
′
u, b]. Now a ↔z x, x ↔z c, x ↔z b

(each walk having endpoint x) establish a weak 3-octopus containing T ′ that does

not dominate z, a contradiction.

Since we have previously assumed that x ∼ Pb,z, let ℓx be the last vertex in

Pb,z that is adjacent to x. Consider the following walk: let Q = Pb,z[b, ℓx]−x and

Q′ = x−Az
x,y−Pc,y. The walks a ↔z x,Q,Q′ (each walk having endpoint x) establish

a weak 3-octopus containing T ′ such that z can only be dominated by the subpath
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Pc,y. We let ℓz be the last vertex in Pc,y that is adjacent to z. Finally, we consider

three different cases where Pa,z is adjacent to v. We let ℓy be the last vertex in Pa,z

that is adjacent to y.

Case 2.2.1: Some vertex after ℓy along Pa,z is adjacent to v. Let ℓv be the

last such vertex in Pa,z (recall that i′ = a). Also, let ℓ′v be the last vertex in Pa,y

that is adjacent to v and let ℓu be the last vertex in Pb,y that is adjacent to u.

Notice that ℓ′v ̸∼ y, otherwise ⟨y, ℓ′v, v, x⟩ is an, x, y-path of length 3, a contradiction.

Similarly, ℓu ̸∼ y. Let a ↔y v = Pa,y[a, ℓ
′
v]−v, v ↔y z = v−Pa,z[ℓv, z]−Pc,y[ℓz, c],

and v ↔y b = ⟨v, x, u⟩−Pb,y[ℓu, b]. Now a ↔y v, v ↔y z, v ↔y b (each walk having

endpoint v) establish a weak 3-octopus containing T ′ that does not dominate y, a

contradiction.

Case 2.2.2: Some vertex before fy along Pa,z is adjacent to v. Let f ′
v be the first

such vertex in Pa,z. Let ℓu be the last vertex in Pb,y that is adjacent to u. Let a ↔y x =

Pa,z[a, f
′
v]−⟨v, x⟩, x ↔y b = ⟨x, u⟩−Pb,y[ℓu, b], and x ↔y c = x−Ay

x,z−Pc,y[ℓz, c]. Now

a ↔y x, x ↔y b, x ↔y c (each walk having endpoint x) establish a weak 3-octopus

containing T ′ that does not dominate y, a contradiction.

Case 2.2.3: Every vertex along Pa,z that is adjacent to v is contained in Pa,z[fy, ℓy].

Let a ↔z y = Pa,z[a, fy]−y−Pa,z[ℓy, z]. Now a ↔z y, Pb,z, Pc,z (each walk having

endpoint z) establish a weak 3-octopus containing T ′ that does not dominate v, a

contradiction.

Definition 54. Given a graph G with dt(G) = 3, let T = (x, y, z) be a golden triple

and let T ′ = (a, b, c) be a dominating triple. Then we say that a ∈ T ′ is associated

with x ∈ T if (a, y, z) is a dominating triple.

In the next lemma, we show that in fact under the hypotheses of Lemma 53 there

is a bijection between T and T ′ such that each element of T ′ is associated with its
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image in T . In fact we prove this by showing that we can make a double substitution

from T ′ into T .

Lemma 55. Under the hypotheses of Lemma 53, suppose that (u, y, z) and (x, v, z)

are dominating triples with u, v ∈ {a, b, c}. Then, {u, v, z} is a dominating target,

and in particular u ̸= v. From this it is immediate that there is a bijection mapping

{x, y, z} to {a, b, c} such that each of x, y, z is associated with its image.

Proof. Suppose otherwise. Let M be a connected superset of (u, v, z) that is not adja-

cent to some vertex w. Note that we will be especially concerned with the possibility

that w = x or w = y. Let Az
x,y, A

y
x,z, and Ax

y,z be induced asteroidal paths. The

walks W = Az
x,y−Ax

y,z and W ′ = Ay
x,z−Ax

y,z are connected supersets of T and hence

dominate G.

Let p ∈ W be adjacent to u. Suppose p ̸∈ N [x]. If p ∈ Az
x,y then u−Az

x,y[p, y]

−Ax
y,z is a connected superset of (u, y, z) that does not dominate x. Otherwise, if

p ∈ Ay
x,z then u−Ay

x,z[p, z]−Ax
y,z is a connected superset of (u, y, z) that does not

dominate x. Either case gives us a contradiction. Therefore, p ∈ N [x]. Similarly, for

all p′ ∈ W ′ adjacent to v we have p′ ∈ N [y].

Now M ∪ ⟨v, p′, y⟩ is a connected superset of (u, y, z) such that only ⟨p′, y⟩ can be

adjacent to w. Therefore, w ∈ N [{p′, y}]. (Note that this is even true if y = p′ = w).

Similarly, w ∈ N [{p, x}]. There is, therefore, a path of length at most 4 from x to y

going via w. If it is not the induced path P = ⟨x, p, w, p′, y⟩ (with all these vertices

distinct), then dG(x, y) < 4, a contradiction. The right graph in Fig. 3.5 depicts this

stage of our proof.

The preceding establishes thatM ∼ x andM ∼ y. Consequently, G[{x}∪M∪{y}]

is a connected superset of T that does not dominate w, a contradiction. So far, we

have proven (u, v, z) is a dominating triple. If u = v, then (u = v, z) is a dominating
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pair, contradicting dt(G) = 3. Therefore, u ̸= v. Similarly, z ̸∈ {u, v}. Thus, {u, v, z}

is a dominating target.

We have shown that, given a golden triple T and an arbitrary dominating triple

U , we can exchange vertices between T and U up to twice. Next we show by Theorem

56 that any other dominating triple U ′ can exchange vertices with either T or U . Two

lemmas that are applied within the proof can be found in the Appendix.

xa

a′

p
p′

zc

c′

yb

b′

v

M

Figure 3.6: Portraying the proof of Theorem 56 where w = c and v ∼ Pb,y.

Theorem 56. Given a graph G with dt(G) = 3, let T = (x, y, z), U = (a, b, c), and

U ′ = (a′, b′, c′) be dominating triples such that T is golden. Suppose that a, a′ are

associated with x, b, b′ are associated with y, and c, c′ are associated with z. Then any

set W containing exactly one element from each of {x, a, a′}, {y, b, b′}, {z, c, c′} is a

dominating triple.

Proof. If |{x, y, z} ∩W | ≥ 1 then we are done by Lemmas 53 and 55. Without loss

of generality it suffices to prove that (a′, b, w) for each w ∈ {z, c, c′} is a dominating

triple.

Suppose for the sake of contradiction that some (a′, b, w) is not a dominating

triple. Some connected superset M of (a′, b, w) does not dominate some vertex v. Let
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Pa′,x, Pb,y, Pw,z be induced paths with endpoints (a′, x), (b, y), (w, z), respectively. By

Lemma 58, we have that v ̸∈ T . If w ∈ {z, c} then, by assumption, M ∪ Pa′,x is a

connected superset of (x, b, w) and is hence dominating. In particular, v ∼ Pa′,x. If

instead w = c′, then similarly M ∪ Pb,y is a connected superset of the dominating

triple (a′, y, c′) and thus v ∼ Pb,y. These two cases are symmetric (switching {x, a, a′}

for {y, b, b′}) so w.l.o.g. we assume w ∈ {z, c}.

Let ℓv be the last vertex in Pa′,x that is adjacent to v. Then Pb,y ∪ M ∪ Pw,z is

a connected superset of the dominating triple (a′, y, z), so v ∼ Pb,y or v ∼ Pw,z. If

w = z then v ̸∼ Pw,z because v ∈ N [z] implies that v ∈ N [M ], a contradiction.

Therefore v ∼ Pb,y. If w = c, we could have either v ∼ Pb,y or v ∼ Pw,z. These cases

are symmetric, so we assume w.l.o.g. in both cases, w = c or w = z, that v ∼ Pb,y.

Let ℓ′v be the last vertex in Pb,y that is adjacent to v.

By Lemma 59 where (x1, x2, x3) := (x, y, z), (y1, y2, y3) = (a′, b, w), M := M , and

v := v, let p ∈ N [x] ∩N [v] satisfy the conclusion of the lemma.

By Lemma 59 where (x1, x2, x3) := (y, x, z), (y1, y2, y3) = (b, a′, w), M := M , and

v := v, let p′ ∈ N [y] ∩N [v] satisfy the conclusion of the lemma.

There is a path of length at most 4 from x to y going via v. If it is not the induced

path P = ⟨x, p, v, p′, y⟩ (with all these vertices distinct as shown in Fig. 3.6), then

dG(x, y) < 4, a contradiction. The preceding establishes that M ∼ x and M ∼ y.

Consequently, G[{x} ∪ M ∪ {y}] is a connected superset of (x, y, w) that does not

dominate v, a contradiction.

The following immediate consequence of Theorem 56 is our main result.

Theorem 57. Let G be a graph with dt(G) = 3. If G contains a golden triple, then

G has a polar target of size 3.
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Proof. Let {x, y, z} be a golden triple and set A = {a ∈ V : a is associated with x}

and similarly let B and C be the sets of vertices associated to y and z, respectively.

By Theorem 56 any set meeting each of A,B,C in one vertex is a dominating triple.

By Lemma 55, any dominating triple has this form.

At is trivial to show that all dominating triples in a graph can be computed in

O(n4). However, if a golden triple T is given, then by Theorem 57 we have that a

polar target of size 3 exists. Then, all remaining dominating triples can be computed

in O(n2) as follows: Any single set in the polar target can be computed by fixing a

pair of vertices x, y ∈ T , iterating on every other vertex z in the graph, and checking if

{x, y, z} is a dominating triple. Thus, on the algorithmic side, a polar target provides

reduced run-time complexities.

We believe that this result can be generalized to polar targets of arbitrary size.

Conjecture 57.1. If k ≥ 2 and G is a graph having dt(G) = k and a k-set that is

simultaneously a 4-distant asteroidal set and a dominating target, then G has a polar

target of size k.

3.5 Appendix

This appendix contains two lemmas that are applied within Theorem 56 to com-

plete the result. Lemma 58 can be precisely applied within Theorem 56 using the

same names for variables. So, we keep the names in the lemma identical to the names

given by the hypotheses of the theorem. The same cannot be done with Lemma 59,

so the vertices within its hypotheses are given a more generic naming convention (i.e.

x1, x2, . . . ).
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Lemma 58. Given a graph G with dt(G) = 3, let T = (x, y, z), U = (a, b, c), and

U ′ = (a′, b′, c′) be dominating triples such that T is golden. Suppose that a, a′ are

associated with x, b, b′ are associated with y, and c, c′ are associated with z. Let

w ∈ {z, c, c′} and suppose some connected superset M of (a′, b, w) does not dominate

a vertex v. Then v ̸∈ T . (Of course, the same holds for {x, a, a′}, {y, b, b′}.)

Proof. By Lemma 55 we have that any double substitution of associated vertices from

U or from U ′ into T is a dominating triple.

Let Pa′,x, Pb,y, Pw,z be induced paths with endpoints (a′, x), (b, y), (w, z), respec-

tively. Suppose for the sake of contradiction that v ∈ T .

Case 1. v = x or v = y. W.l.o.g. let v = y. Suppose that w ∈ {z, c}. We have

assumed that (x, b, w) is a dominating triple. Hence, M ∪Pa′,x must dominate y. Let

ℓy be the last vertex in Pa′,x that is adjacent to y. Notice that ℓy ̸∼ x, otherwise

dG(x, y) ≤ 2. However, the walk W = Pa′,x[a
′, ℓy]−y−Ax

y,z is a connected superset of

(a′, y, z) that does not dominate x, a contradiction.

Instead, suppose that w = c′. We have thatM∪Pa′,x∪Pc′,z is a connected superset

of (x, b, z) and, thus, dominates y. W.l.o.g. suppose that ℓy is the last vertex in Pa′,x

that is adjacent to y. Similar to where w ∈ {z, c}, the walk W exists and it does not

dominate x, a contradiction.

Case 2. v = z. Obviously, w ̸= z. W.l.o.g. let w = c. Now M ∪ Pa′,x is a con-

nected superset of (x, b, c). Let ℓz be the last vertex in Pa′,x that is adjacent to z. No-

tice that ℓz ̸∼ x, otherwise dG(x, z) ≤ 2. However, the walk W = Pa′,x[a
′, ℓz]−z−Ax

z,y

is a connected superset of (a′, y, z) that does not dominate x, a contradiction.

Lemma 59. Given a graph G with dt(G) = 3, let T = (x1, x2, x3), U = (y1, x2, x3),

U ′ = (x1, y2, y3) be dominating triples such that T is golden. Suppose M is some

connected superset of (y1, y2, y3) that does not dominate v. Let Py1,x1 be an induced
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y1, x1-path and that ℓv is the last vertex on it adjacent to v. Similarly, let ℓ′v be the

last vertex in an induced y2, x2-path Py2,x2 adjacent to v. Then N [x1] ∩N [v] ̸= ∅.

Proof. Let R1 = Py1,x1 [y1, ℓv] and R2 = Py2,x2 [ℓ
′
v, x2]. Then, let W = R1−v−R2

−Ax1
x2,x3

. Now W is a connected superset of U such that only ⟨ℓv, v⟩ or R2 may

neighbor x1. If x1 ∼ ℓv or x1 ∼ v then we are done.

Suppose that x1 ̸∼ ℓv, v. Then, x1 ∼ R2. Let ℓx1 be the last vertex in R2 that is ad-

jacent to x1. If ℓx1 = ℓ′v, then we are done. Otherwise, the walk x1−R2[ℓx1 , x2]−Ax1
x2,x3

is a connected superset of T and thus must be adjacent to y1.

Suppose that x1 ∈ N [y1]. Now M ∪⟨y1, x1⟩ is a connected superset of U ′ and thus

x1 ∼ v. There exists a walk ⟨v, x1, y1⟩, so we are done. Suppose that x1 ̸∈ N [y1]. Any

Ax1
x2,x3

cannot be adjacent to y1, otherwise {y1} ∪ Ax1
x2,x3

is a connected superset of U

that does not dominate x1, a contradiction. Therefore, y1 ∼ R2[ℓx1 , x2].

Let ℓy1 be the last vertex in R2[ℓx1 , x2] that is adjacent to y1. If ℓx1 ̸= ℓy1 then

y1−R2[ℓy1 , x2]−Ax1
x2,x3

is a connected superset of U that does not dominate x1, a

contradiction. Thus, ℓx1 = ℓy1 . Let Q = ⟨y1, ℓy1 , x1⟩. Since M ∪ Q is a connected

superset of U ′, we have that v ∼ ℓy1 or v ∼ x1, so we are done.
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Chapter 4

Conclusion

In this thesis, we studied properties of graphs with asteroidal sets and dominat-

ing targets of both bound and arbitrary sizes. We presented properties of graphs

that do not have an asteroidal triple with 3-spread, and showed that for such graphs

every dominating pair path meets the common neighborhood of some pair in each

asteroidal triple. Our notable results include a faster algorithm for the recognition of

chordal hereditary dominating pair graphs, an improvement over the previous best

run-time posed by Pržulj, Corneil, and Köhler [24]. Moreover, we corrected a mis-

take in the literature, showing by counterexample that a graph having a dominating

shortest path does not necessarily contain a dominating diametral path. We defined

strict dominating pair graphs in order to capture the discrepancy between these two

properties, and we studied algorithmic and structural properties of strict dominating

pair graphs. We showed that asteroidal quadruples are a key structural property in

these graphs and that, even in general, asteroidal sets place strong restrictions on the

connected supersets of dominating targets. These results accompany literature, as

early as Kloks et al. [17], that has shown strong connections between these two types

of sets.

Some of our results generalize known properties of AT-free graphs or graphs where

dominating target number is at most 2. Notably, we defined the concept of a polar
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target, showed a sufficient condition for a graph to have a polar target of size 3, and

conjectured that a similar condition may exist for a graph to have a polar target

of size k. Along the way, we studied graphs that cannot have polar targets, most

notably cycle graphs. Additional study of vertex eccentricities may lead to a necessary

condition for polar targets to exist in graphs. The study of the diameter problem on

strict dominating pair graphs could extend our result of Corollary 17 to a more general

case. A possibility for the polynomial-time recognition of the HDP graphs remains an

interesting open problem. Conditions for existence or non-existence of polar targets

may provide additional, fruitful inquiry of dominating targets and their diameter

properties.
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[5] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM

Publications Library, 1999.

[6] H. Broersma, T. Kloks, D. Kratsch, and H. Müller. Independent sets in asteroidal

triple-free graphs. SIAM J. Discrete Math, 12(2), 1999.



65

[7] D. Corneil, S. Olariu, and L. Stewart. Linear time algorithms for dominating

pairs in asteroidal triple-free graphs. SIAM J. Comput., 28(4), 1999.

[8] D. G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free graphs. SIAM

Journal on Discrete Mathematics, 10(3):399–430, 1997.

[9] G. Ducoffe. The diameter of AT-free graphs. Journal of Graph Theory, 99(4):594–

614, 2022.

[10] J. Dyrseth and P. T. Lima. On the Complexity of Rainbow Vertex Colouring

Diametral Path Graphs. In S. W. Bae and H. Park, editors, 33rd Interna-

tional Symposium on Algorithms and Computation (ISAAC 2022), volume 248

of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–43:13,

Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[11] S. Foldes and P. L. Hammer. Split graphs. In Proceedings of the Eighth South-

eastern Conference on Combinatorics, Graph Theory and Computing (Louisiana

State Univ., Baton Rouge, La., 1977), volume No. XIX of Congress. Numer.,

pages 311–315. Utilitas Math., Winnipeg, MB, 1977.

[12] F. Fomin, D. Kratsch, and D. Müller. Algorithms for graphs with small octopus.

Journal of Discrete Applied Mathematics, 134:105–128, 2004.

[13] P. A. Golovach, P. Heggernes, D. Kratsch, and A. Rafiey. Cliques and clubs. In

P. G. Spirakis and M. Serna, editors, Algorithms and Complexity, pages 276–287,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[14] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier, 2004.

[15] H. Hempel and D. Kratsch. On claw-free asteroidal triple-free graphs. Discrete

Applied Mathematics, 121(1):155–180, 2002.



66

[16] T. Kloks, D. Kratsch, and H. Müller. Asteroidal sets in graphs. In R. H. Möhring,
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